清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bio-interpretable ensemble learning model for invasive pulmonary adenocarcinoma grade using CT and histopathology images

作者
Zhihe Yang,Li Fan,Qijia Han,Zhilong Ai,Minyi Wu,Qiuxing Chen,S J Qu,Lingxiang Liu,Haowen Yan,Guorong Zou,Fang Chen,Hao Wang,Zhiming Xiang
出处
期刊:npj precision oncology [Springer Nature]
标识
DOI:10.1038/s41698-025-01239-3
摘要

Abstract The significant heterogeneity and complex morphology of invasive pulmonary adenocarcinoma (IPA) make grading challenging for pathologists. However, thorough investigations into radiopathomics features extracted from computed tomography (CT) and whole slide images (WSIs) for IPA grading and their biological significance remain limited. We aim to integrate multi-omics analysis to establish a robust grading model for IPA and reveal its biological significance. This multicenter study encompassed 988 patients who underwent radical surgical resection and received a pathological confirmation of IPA. Through integrated analysis of radiomics and pathomics, we constructed and validated an optimal ensemble learning grading model, which integrates multi-scale and multi-modal characteristics, achieved AUCs of 0.885, 0.920, 0.833, and 0.905 in the internal and external validation sets. Further systematic analysis of paired CT, WSIs, and RNA sequencing, two co-expression modules, 23 hub genes, and 680 significant pathways associated with grading were identified. Moreover, the reproducibility of the radiopathomics phenotypes, linked to multiple biological pathways—including signal transduction, cell differentiation, DNA damage and repair, cell proliferation and growth, metabolism, and metastasis and invasion—has been validated. In conclusion, the integration of radiological and pathological characteristics enhances the accuracy in differentiating high-grade IPA, offering a robust approach for grading. Multi-scale imaging biomarkers may promote personalized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
9秒前
15秒前
18秒前
20秒前
24秒前
26秒前
27秒前
31秒前
37秒前
44秒前
47秒前
49秒前
49秒前
ljgdalj发布了新的文献求助10
52秒前
MiaMia完成签到,获得积分10
56秒前
blackddl应助科研通管家采纳,获得10
57秒前
小二郎应助科研通管家采纳,获得10
57秒前
57秒前
59秒前
MUAN完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
dawnfrf应助sissiarno采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ljgdalj完成签到,获得积分10
1分钟前
1分钟前
1分钟前
思源应助1820采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
华仔应助twk采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
笑对人生完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688326
求助须知:如何正确求助?哪些是违规求助? 5065137
关于积分的说明 15193827
捐赠科研通 4846586
什么是DOI,文献DOI怎么找? 2598940
邀请新用户注册赠送积分活动 1551015
关于科研通互助平台的介绍 1509652