Artificial intelligence in early onset scoliosis: a scoping review

作者
CW Lam,Jennifer Tasong,Halil Bulut,Amy Udall,Tenghis Sukhbaatar,Gary Hoang,Aran Koye,Ji-Young Ahn,Fayez G Ghazi,David Loader,Conor Boylan,Jwalant Mehta,George McKay,Morgan Jones
出处
期刊:Spine deformity [Springer Nature]
标识
DOI:10.1007/s43390-025-01208-7
摘要

Abstract Purpose Early onset scoliosis comprises spinal deformities in children younger than 10, creating challenges in diagnosis, risk assessment, and management. Timely intervention is vital, because untreated deformity can lead to cardiopulmonary compromise. Artificial intelligence and machine learning are reshaping orthopaedic care by improving detection, forecasting progression, and guiding treatment. This scoping review maps current use in this patient population. Methods Following PRISMA ScR standards, we systematically searched PubMed, Embase, Web of Science, Cochrane, and Scopus for studies that developed, applied, or validated AI models to diagnose, manage, or predict outcomes in EOS. Results After removing duplicates, 352 records were screened, 22 full texts were reviewed, and 11 studies met inclusion criteria. Most investigations (63.6%) employed convolutional neural networks (CNNs) such as Mask R CNN, EfficientNet, and U Net. Ensemble learning with gradient boosting, random forest, and logistic regression (9.1%), Gaussian Naïve Bayes (9.1%), sparse additive machines (9.1%), and unsupervised clustering (9.1%) were also used. Image analysis dominated (72.7%), automating radiographic measurements (Cobb angle, skeletal maturity) and monitoring growing-rod distraction. Predictive models (27.3%) estimated prolonged hospital stay, unplanned reoperation, or postoperative complications. Mean accuracy was 91.2% (range 86.1% to 94.0%). Common limitations were small sample sizes, single-centre data, and limited external validation. Conclusion AI shows promise for EOS imaging and risk prediction, yet translation is hindered by methodological heterogeneity and scarce external validation. Future work should adopt standardised reporting, aggregate multicentre datasets, and test models prospectively in large cohorts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助不见岳采纳,获得50
刚刚
桐桐应助mratoz采纳,获得10
1秒前
Criminology34举报宇辰求助涉嫌违规
2秒前
杨武天一完成签到,获得积分20
3秒前
5秒前
6秒前
7秒前
温婉的如波完成签到,获得积分10
8秒前
8秒前
9秒前
franklin_fsz给祁尒的求助进行了留言
9秒前
尤寄风发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
14秒前
泌外科研发布了新的文献求助20
15秒前
乐乐完成签到,获得积分10
15秒前
keke发布了新的文献求助10
15秒前
大力南风发布了新的文献求助10
16秒前
16秒前
钟小先生发布了新的文献求助10
16秒前
17秒前
王武聪完成签到 ,获得积分10
21秒前
odanfeonq发布了新的文献求助10
22秒前
23秒前
T1unkillable发布了新的文献求助100
24秒前
CodeCraft应助可爱香槟采纳,获得30
25秒前
27秒前
泌外科研完成签到,获得积分10
27秒前
Jasper应助Nirvan采纳,获得10
27秒前
28秒前
29秒前
科小白完成签到 ,获得积分10
30秒前
又欠发布了新的文献求助10
32秒前
32秒前
大模型应助lcy采纳,获得10
32秒前
李姝仪完成签到 ,获得积分10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008