SCL: Self-supervised contrastive learning for few-shot image classification

计算机科学 人工智能 模式识别(心理学) 样品(材料) 班级(哲学) 水准点(测量) 基础(拓扑) 一般化 任务(项目管理) 旋转(数学) 代表(政治) 机器学习 数学 数学分析 政治 经济 化学 色谱法 管理 法学 地理 政治学 大地测量学
作者
Jit Yan Lim,Kian Ming Lim,Chin Poo Lee,Yong Xuan Tan
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 19-30 被引量:22
标识
DOI:10.1016/j.neunet.2023.05.037
摘要

Few-shot learning aims to train a model with a limited number of base class samples to classify the novel class samples. However, to attain generalization with a limited number of samples is not a trivial task. This paper proposed a novel few-shot learning approach named Self-supervised Contrastive Learning (SCL) that enriched the model representation with multiple self-supervision objectives. Given the base class samples, the model is trained with the base class loss. Subsequently, contrastive-based self-supervision is introduced to minimize the distance between each training sample with their augmented variants to improve the sample discrimination. To recognize the distant sample, rotation-based self-supervision is proposed to enable the model to learn to recognize the rotation degree of the samples for better sample diversity. The multitask environment is introduced where each training sample is assigned with two class labels: base class label and rotation class label. Complex augmentation is put forth to help the model learn a deeper understanding of the object. The image structure of the training samples are augmented independent of the base class information. The proposed SCL is trained to minimize the base class loss, contrastive distance loss, and rotation class loss simultaneously to learn the generic features and improve the novel class performance. With the multiple self-supervision objectives, the proposed SCL outperforms state-of-the-art few-shot approaches on few-shot image classification benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助范户晓采纳,获得10
1秒前
BREEZE完成签到,获得积分10
2秒前
lu发布了新的文献求助10
2秒前
冷傲山彤发布了新的文献求助10
3秒前
4秒前
小二郎应助怡然幼枫采纳,获得10
5秒前
文艺的鞅发布了新的文献求助10
6秒前
6秒前
lhq发布了新的文献求助10
6秒前
酷波er应助shunshun51213采纳,获得10
7秒前
7秒前
香蕉觅云应助VL_3采纳,获得10
8秒前
Owen应助PATTOM采纳,获得10
9秒前
10秒前
科研通AI5应助粗暴的达采纳,获得10
10秒前
00279完成签到,获得积分10
10秒前
11秒前
舒心雅山发布了新的文献求助10
12秒前
12秒前
今后应助啦啦啦采纳,获得10
13秒前
搜集达人应助自由背包采纳,获得10
14秒前
15秒前
科研通AI5应助Auditor采纳,获得10
16秒前
ohh发布了新的文献求助10
16秒前
小宁完成签到,获得积分20
17秒前
科研巨额发布了新的文献求助10
18秒前
18秒前
18秒前
科研通AI5应助笑点低的鸿采纳,获得10
19秒前
可爱的函函应助吃糖采纳,获得10
20秒前
jenningseastera应助怡然幼枫采纳,获得10
20秒前
bkagyin应助bing采纳,获得10
21秒前
PATTOM完成签到,获得积分10
21秒前
科目三应助yeahsawyou采纳,获得10
22秒前
xmhxpz发布了新的文献求助10
22秒前
烂漫草莓发布了新的文献求助10
23秒前
23秒前
Jackie_Chan完成签到,获得积分10
23秒前
科研巨额完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787560
求助须知:如何正确求助?哪些是违规求助? 3333152
关于积分的说明 10259611
捐赠科研通 3048676
什么是DOI,文献DOI怎么找? 1673197
邀请新用户注册赠送积分活动 801720
科研通“疑难数据库(出版商)”最低求助积分说明 760338