清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of colorimetric sensor array coupled with machine‐learning approaches for the discrimination of grains based on freshness

主成分分析 线性判别分析 偏最小二乘回归 人工智能 模式识别(心理学) 计算机科学 遗传算法 数据集 机器学习
作者
Yue Liang,Hao Lin,Wencui Kang,Xiaokang Shao,Jianrong Cai,Huanhuan Li,Quansheng Chen
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:103 (14): 6790-6799 被引量:10
标识
DOI:10.1002/jsfa.12777
摘要

Volatile organic compounds (VOCs) in grain fluctuate depending on the degree of grain freshness. A new colorimetric sensor array (CSA) was developed as capture probes for the quantification of VOCs in grains in this work, and it was designed to monitor the variation of grain VOCs. CSA spectral data acquisition using visible-near-infrared spectroscopy and image processing of CSA's image imformation by computer were used comparatively. Then, machine-learning-based models - for example, synergistic interval partial least squares, genetic algorithm, competitive adaptive reweighted sampling (CARS) algorithm, and ant colony optimization (ACO) algorithm - were introduced to optimize variables. Moreover, principal component analysis, and linear discriminant analysis (LDA), and K-nearest neighbors (KNN) were used for the classification. Ultimately, quantitative models for detecting grain freshness are developed using various variable selection strategies.Compared with the pattern recognition results of image processing, visible-near-infrared spectroscopy could better separate the grains with different freshness from principal component analysis, and the prediction set of LDA models could correctly identify 100% of rice, 96.88% of paddy, and 97.9% of soybeans. In addition, compared with CARS and ACO, the LDA model and KNN model based on genetic algorithms show the best prediction performance. The prediction set could correctly identify 100% of rice and paddy samples and 95.83% of soybean samples.The method developed could be used for non-destructive detection of grain freshness. © 2023 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongt05完成签到 ,获得积分10
23秒前
优秀的dd完成签到 ,获得积分10
36秒前
念念完成签到,获得积分10
1分钟前
Shining_Wu完成签到,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
芝麻汤圆完成签到,获得积分10
2分钟前
自然之水完成签到,获得积分10
2分钟前
LaTeXer应助fdj3121采纳,获得30
2分钟前
maodeshu完成签到,获得积分10
2分钟前
fdj3121完成签到,获得积分10
2分钟前
赘婿应助maodeshu采纳,获得10
2分钟前
earthai完成签到,获得积分10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zhubin完成签到 ,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
juan完成签到 ,获得积分10
4分钟前
4分钟前
maodeshu发布了新的文献求助10
5分钟前
xiaxiao完成签到,获得积分0
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得20
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
huangzsdy完成签到,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
稻子完成签到 ,获得积分10
6分钟前
6分钟前
柔弱友菱发布了新的文献求助10
6分钟前
子郁完成签到 ,获得积分10
7分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得20
8分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360201
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058