Contrastive Semi-Supervised Learning for Domain Adaptive Segmentation Across Similar Anatomical Structures

计算机科学 人工智能 分割 卷积神经网络 模式识别(心理学) 领域(数学分析) 规范化(社会学) 域适应 计算机视觉 分类器(UML) 数学 人类学 数学分析 社会学
作者
Ran Gu,Jingyang Zhang,Guotai Wang,Wenhui Lei,Tao Song,Xiaofan Zhang,Kang Li,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (1): 245-256 被引量:17
标识
DOI:10.1109/tmi.2022.3209798
摘要

Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for medical image segmentation, yet need plenty of manual annotations for training. Semi-Supervised Learning (SSL) methods are promising to reduce the requirement of annotations, but their performance is still limited when the dataset size and the number of annotated images are small. Leveraging existing annotated datasets with similar anatomical structures to assist training has a potential for improving the model’s performance. However, it is further challenged by the cross-anatomy domain shift due to the image modalities and even different organs in the target domain. To solve this problem, we propose Contrastive Semi-supervised learning for Cross Anatomy Domain Adaptation (CS-CADA) that adapts a model to segment similar structures in a target domain, which requires only limited annotations in the target domain by leveraging a set of existing annotated images of similar structures in a source domain. We use Domain-Specific Batch Normalization (DSBN) to individually normalize feature maps for the two anatomical domains, and propose a cross-domain contrastive learning strategy to encourage extracting domain invariant features. They are integrated into a Self-Ensembling Mean-Teacher (SE-MT) framework to exploit unlabeled target domain images with a prediction consistency constraint. Extensive experiments show that our CS-CADA is able to solve the challenging cross-anatomy domain shift problem, achieving accurate segmentation of coronary arteries in X-ray images with the help of retinal vessel images and cardiac MR images with the help of fundus images, respectively, given only a small number of annotations in the target domain. Our code is available at https://github.com/HiLab-git/DAG4MIA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助WANG采纳,获得10
1秒前
安静乐瑶完成签到,获得积分20
1秒前
斯文败类应助徐丑采纳,获得10
1秒前
今后应助柔弱的灰狼采纳,获得10
2秒前
丘比特应助卡乐瑞咩吹可采纳,获得10
2秒前
lululu发布了新的文献求助10
3秒前
Lee0923完成签到,获得积分10
3秒前
吴阳完成签到,获得积分10
3秒前
时若完成签到 ,获得积分10
3秒前
3秒前
李明月完成签到,获得积分10
4秒前
高高发布了新的文献求助10
5秒前
汎影发布了新的文献求助10
5秒前
6秒前
Peggy完成签到,获得积分10
7秒前
罗踩踩发布了新的文献求助10
7秒前
打工人完成签到,获得积分10
8秒前
饱满的小熊猫完成签到,获得积分20
8秒前
9秒前
小鱼儿完成签到,获得积分10
9秒前
香蕉觅云应助洛谷图灵姬采纳,获得10
9秒前
10秒前
Jimmy Ko发布了新的文献求助10
10秒前
张张发布了新的文献求助10
10秒前
11秒前
zy完成签到,获得积分20
11秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
11秒前
12秒前
native发布了新的文献求助10
12秒前
气温仍然发布了新的文献求助10
14秒前
小七完成签到,获得积分10
14秒前
高高乐天发布了新的文献求助10
15秒前
15秒前
zy发布了新的文献求助10
15秒前
zy3637发布了新的文献求助10
15秒前
落雨声完成签到,获得积分10
15秒前
小蘑菇应助高高采纳,获得10
16秒前
淡然宛凝发布了新的文献求助10
16秒前
淡然宛凝发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817816
求助须知:如何正确求助?哪些是违规求助? 3361010
关于积分的说明 10410847
捐赠科研通 3079181
什么是DOI,文献DOI怎么找? 1691004
邀请新用户注册赠送积分活动 814290
科研通“疑难数据库(出版商)”最低求助积分说明 768075