Combined HTR1A/1B methylation and human functional connectome to recognize patients with MDD

判别式 重性抑郁障碍 人工智能 神经影像学 特征(语言学) 心理学 静息状态功能磁共振成像 连接体 计算机科学 模式识别(心理学) 功能连接 神经科学 认知 语言学 哲学
作者
Zhi Xu,Chenjie Gao,Tingting Tan,Wenhao Jiang,Tianyu Wang,Zimu Chen,Shen Tian,Lei Chen,Haiping Tang,Wenji Chen,Bingwei Chen,Zhijun Zhang,Yonggui Yuan
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:317: 114842-114842 被引量:3
标识
DOI:10.1016/j.psychres.2022.114842
摘要

This study aimed to use a machine-learning method to identify HTR1A/1B methylation and resting-state functional connectivity (rsFC) related to the diagnosis of MDD, then try to build classification models for MDD diagnosis based on the identified features.Peripheral blood samples were collected from all recruited participants, and part of the participants underwent the resting-state fMRI scan. Features including HTR1A/1B methylation and rsFC were calculated. Then, the initial feature sets of epigenetics and neuroimaging were separately input into an all-relevant feature selection to generate significant discriminative power for MDD diagnosis. Random forest classifiers were constructed and evaluated based on identified features. In addition, the SHapley Additive exPlanations (SHAP) method was adapted to interpret the diagnostic model.A combination of selected HTR1A/1B methylation and rsFC feature sets achieved better performance than using either one alone - a distinction between MDD and healthy control groups was achieved at 81.78% classification accuracy and 0.8948 AUC.A high classification accuracy can be achieved by combining multidimensional information from epigenetics and cerebral radiomic features in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD and further exploring the pathogenesis of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Q777完成签到 ,获得积分10
刚刚
我我我完成签到,获得积分10
刚刚
刚刚
英俊的晓蓝完成签到,获得积分10
刚刚
雪白雍完成签到,获得积分10
1秒前
Jin发布了新的文献求助10
1秒前
积极的邪欢完成签到,获得积分10
1秒前
Nizarn完成签到,获得积分20
1秒前
1秒前
5476发布了新的文献求助10
2秒前
NUS完成签到,获得积分10
2秒前
儒雅台灯完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
小子一阿一完成签到,获得积分10
3秒前
清秀乘云发布了新的文献求助10
4秒前
钱来完成签到,获得积分10
4秒前
爆米花应助蔡蔡不菜菜采纳,获得10
4秒前
G1234完成签到,获得积分20
5秒前
大个应助刘晓丹采纳,获得10
5秒前
qiongqiong发布了新的文献求助10
6秒前
yaya完成签到,获得积分10
6秒前
充电宝应助艺玲采纳,获得10
6秒前
JJ完成签到,获得积分10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得50
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
dz发布了新的文献求助10
6秒前
6秒前
6秒前
victory应助科研通管家采纳,获得10
7秒前
7秒前
小丁猫应助科研通管家采纳,获得10
7秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473907
求助须知:如何正确求助?哪些是违规求助? 3932688
关于积分的说明 12201380
捐赠科研通 3587372
什么是DOI,文献DOI怎么找? 1972123
邀请新用户注册赠送积分活动 1009923
科研通“疑难数据库(出版商)”最低求助积分说明 903537