The intelligent experience inheritance system for Traditional Chinese Medicine

标准化 遗传(遗传算法) 药方 模式(遗传算法) 相似性(几何) 中医药 建筑 人工智能 病历 医学 计算机科学 替代医学 知识管理 机器学习 护理部 病理 放射科 艺术 视觉艺术 图像(数学) 化学 操作系统 基因 生物化学
作者
Xue Ren,Yan Guo,Heyuan Wang,Xiang Gao,Wei Chen,Tengjiao Wang
出处
期刊:Journal of Evidence-based Medicine [Wiley]
卷期号:16 (1): 91-100 被引量:7
标识
DOI:10.1111/jebm.12517
摘要

The inheritance of knowledge and experience was crucial to the development of Traditional Chinese Medicine (TCM). However, the existing methods of inheriting the unique clinical experience of famous veteran TCM doctors still followed the outdated and inefficient Master-Prentice schema. In addition, the inherited medical books and records were usually lack of standardization and systematization. In this article, a new method for inheriting the academic thoughts and clinical experience of famous veteran doctors with the help of artificial intelligence technology was explored. Due to the individualized treatment characteristics namely "same disease with different treatments, different diseases with the same treatment," the intelligent inheritance of TCM faced many technical barriers. To tackle these problems, we proposed a prototype system framework for the intelligent inheritance of famous veteran doctors based on rules and deep learning models and performed a case study on the treatment of pediatric asthma. The architecture could not only make full use of the advantages of deep learning, but also integrate the valuable knowledge and experience analysis of famous veteran doctors from injected rules. Specifically, the study took pediatric asthma medical records as training and test samples and calculated the similarity between the generated prescriptions and the real-world clinical prescriptions from the famous veteran doctors. Experimental results showed that the generated prescription could achieve a similarity of more than 90%. It proved that the proposed framework provided a feasible way for the intelligent inheritance and research of the academic thoughts and clinical experience of famous veteran TCM doctors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
1秒前
CHSLN完成签到 ,获得积分10
2秒前
tongkaibing完成签到,获得积分10
3秒前
斯寜应助13313采纳,获得10
7秒前
zz完成签到,获得积分10
7秒前
天真醉波完成签到 ,获得积分10
8秒前
退役干饭王完成签到 ,获得积分20
9秒前
Eins完成签到 ,获得积分10
12秒前
15秒前
科研通AI5应助马马马采纳,获得10
16秒前
橙子完成签到 ,获得积分10
16秒前
blueblue完成签到,获得积分10
16秒前
我不是学术渣完成签到,获得积分10
19秒前
研友_nqrKQZ完成签到 ,获得积分10
19秒前
lzp发布了新的文献求助10
20秒前
默存完成签到,获得积分10
21秒前
ZW完成签到 ,获得积分10
22秒前
miaomiao完成签到 ,获得积分10
22秒前
chen完成签到,获得积分10
23秒前
27秒前
我想静静完成签到 ,获得积分10
28秒前
29秒前
Jasper应助lzp采纳,获得10
30秒前
咸鱼已躺平完成签到,获得积分10
30秒前
火星上小土豆完成签到 ,获得积分10
32秒前
32秒前
黑布林大李子完成签到,获得积分0
34秒前
安静严青完成签到 ,获得积分10
36秒前
BOLIN完成签到,获得积分10
38秒前
玖月完成签到 ,获得积分10
44秒前
马马马完成签到,获得积分10
44秒前
欢呼宛秋完成签到 ,获得积分10
49秒前
53秒前
randylch完成签到,获得积分0
57秒前
57秒前
千振发布了新的文献求助10
59秒前
雪白发卡完成签到,获得积分10
1分钟前
在水一方应助zj采纳,获得10
1分钟前
随遇而安给饱满跳跳糖的求助进行了留言
1分钟前
jiemy完成签到,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843295
求助须知:如何正确求助?哪些是违规求助? 3385613
关于积分的说明 10540874
捐赠科研通 3106195
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823825
科研通“疑难数据库(出版商)”最低求助积分说明 774308