Contrastive Box Embedding for Collaborative Reasoning

计算机科学 推荐系统 任务(项目管理) 交叉口(航空) 协同过滤 人工智能 嵌入 匹配(统计) 情报检索 机器学习 自然语言处理 航空航天工程 工程类 经济 管理 统计 数学
作者
Tingting Liang,Y. Zhang,Qianhui Di,Congying Xia,Youhuizi Li,Yuyu Yin
标识
DOI:10.1145/3539618.3591654
摘要

Most of the existing personalized recommendation methods predict the probability that one user might interact with the next item by matching their representations in the latent space. However, as a cognitive task, it is essential for an impressive recommender system to acquire the cognitive capacity rather than to decide the users' next steps by learning the pattern from the historical interactions through matching-based objectives. Therefore, in this paper, we propose to model the recommendation as a logical reasoning task which is more in line with an intelligent recommender system. Different from the prior works, we embed each query as a box rather than a single point in the vector space, which is able to model sets of users or items enclosed and logical operators (e.g., intersection) over boxes in a more natural manner. Although modeling the logical query with box embedding significantly improves the previous work of reasoning-based recommendation, there still exist two intractable issues including aggregation of box embeddings and training stalemate in critical point of boxes. To tackle these two limitations, we propose a Contrastive Box learning framework for Collaborative Reasoning (CBox4CR). Specifically, CBox4CR combines a smoothed box volume-based contrastive learning objective with the logical reasoning objective to learn the distinctive box representations for the user's preference and the logical query based on the historical interaction sequence. Extensive experiments conducted on four publicly available datasets demonstrate the superiority of our CBox4CR over the state-of-the-art models in recommendation task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Shawn_54采纳,获得10
刚刚
爆米花应助蓝莓酱蘸橘子采纳,获得10
刚刚
晴空万里完成签到,获得积分10
1秒前
1秒前
张吴两胜发布了新的文献求助10
2秒前
2秒前
4秒前
yaoshi钥匙发布了新的文献求助10
5秒前
QAQ小白完成签到,获得积分10
5秒前
皮凡发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
执着的弱发布了新的文献求助10
6秒前
zz完成签到,获得积分10
6秒前
烟花应助辛艺采纳,获得10
7秒前
7秒前
大意的柚子完成签到,获得积分10
8秒前
Russula_Chu完成签到,获得积分10
9秒前
无心的怜南完成签到,获得积分10
9秒前
dd发布了新的文献求助10
9秒前
demo完成签到,获得积分10
9秒前
赘婿应助TMF采纳,获得10
9秒前
9秒前
小白发布了新的文献求助10
10秒前
10秒前
lili发布了新的文献求助40
10秒前
爱笑以松完成签到,获得积分10
11秒前
11秒前
所所应助图图采纳,获得10
11秒前
99发布了新的文献求助30
12秒前
vippp发布了新的文献求助10
12秒前
13秒前
16秒前
李健的小迷弟应助kailiuwang采纳,获得10
16秒前
ling发布了新的文献求助10
17秒前
17秒前
詹慧子发布了新的文献求助10
17秒前
SFFFF发布了新的文献求助10
17秒前
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344226
求助须知:如何正确求助?哪些是违规求助? 4479536
关于积分的说明 13943476
捐赠科研通 4376649
什么是DOI,文献DOI怎么找? 2404880
邀请新用户注册赠送积分活动 1397276
关于科研通互助平台的介绍 1369633