A stacking-CRRL fusion model for predicting the bearing capacity of a steel-reinforced concrete column constrained by carbon fiber-reinforced polymer

Boosting(机器学习) 堆积 碳纤维增强聚合物 Lasso(编程语言) 随机森林 极限学习机 计算机科学 人工智能 预测建模 机器学习 模式识别(心理学) 算法 人工神经网络 物理 核磁共振 复合数 万维网
作者
Ji‐gang Zhang,Guang-chao Yang,Zhehao Ma,Guoliang Zhao,H. K. Song
出处
期刊:Structures [Elsevier BV]
卷期号:55: 1793-1804 被引量:8
标识
DOI:10.1016/j.istruc.2023.06.099
摘要

In a two-level stacking algorithm framework, a fusion model (stacking-CRRL) of categorical boosting (Catboost), random forest regression (RFR), ridge regression (RR), and Least absolute shrinkage and selection operator (LASSO) is proposed and shown to accurately predict the load capacity in axial compression of steel-reinforced concrete columns (SRCCs) clad in carbon fiber-reinforced polymer (CFRP). Sparse initial data were extended by synthetic minority oversampling in the model-building process, and 12 model input features were identified after eliminating redundant features using Spearman correlation coefficients. The prediction performance of five boosting models, two bagging models, and three traditional machine learning (ML) models were compared. The Catboost, RFR, and RR models were selected as the base learners, and LASSO regression was chosen for the meta-learner. The prediction performance of different algorithmic models before and after synthetic minority oversampling technique (SMOTE) processing is compared, and the stacking-CRRL fusion model established is compared with that of established prediction techniques. The Shapley additive explanations technique was applied and discussed the impact of input features on the bearing capacity of SRCCs. The results demonstrate that the prediction performance of the proposed stacking-CRRL fusion model surpasses that of the alternative models tested, that of a published prediction equation, and that of an Abaqus simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷薯片发布了新的文献求助10
刚刚
1秒前
别绪叁仟完成签到,获得积分10
2秒前
拥有八根情丝完成签到 ,获得积分10
3秒前
科研通AI5应助fangzhang采纳,获得10
5秒前
科研通AI5应助fangzhang采纳,获得10
5秒前
科研通AI5应助fangzhang采纳,获得10
5秒前
5秒前
黎某完成签到,获得积分10
7秒前
碳火涮羊肉完成签到 ,获得积分10
8秒前
feiying88发布了新的文献求助10
11秒前
赵怡宁完成签到,获得积分20
13秒前
13秒前
14秒前
顾矜应助我不是阿呆采纳,获得10
15秒前
慕青应助qiehahah采纳,获得10
16秒前
18秒前
19秒前
22秒前
24秒前
24秒前
Wuuuu完成签到,获得积分10
24秒前
天天快乐应助Koko采纳,获得10
25秒前
26秒前
木染发布了新的文献求助10
26秒前
www完成签到,获得积分10
27秒前
28秒前
骑羊发布了新的文献求助10
31秒前
sanyecai发布了新的文献求助10
31秒前
31秒前
夏枯草发布了新的文献求助10
31秒前
34秒前
36秒前
小二郎应助大玲采纳,获得30
38秒前
冰魂应助夏枯草采纳,获得10
39秒前
桐桐应助夏枯草采纳,获得10
39秒前
qiehahah发布了新的文献求助10
41秒前
小二完成签到,获得积分10
42秒前
小满完成签到,获得积分10
44秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776959
求助须知:如何正确求助?哪些是违规求助? 3322349
关于积分的说明 10209964
捐赠科研通 3037710
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797676
科研通“疑难数据库(出版商)”最低求助积分说明 758003