数学
同种类的
领域(数学分析)
继续
数学分析
Neumann边界条件
工作(物理)
持久性(不连续性)
勒贝格积分
偏微分方程
边界(拓扑)
类型(生物学)
应用数学
组合数学
计算机科学
机械工程
生物
工程类
生态学
岩土工程
程序设计语言
作者
M. do P. S. D. Costa,Claudio Cuevas,Clessius Silva,Herme Soto
标识
DOI:10.1002/mana.202200235
摘要
Abstract This work deals with well‐posedness and blow‐up in the setting of Lebesgue and Besov spaces to the time‐fractional Keller–Segel model for chemotaxis under homogeneous Neumann boundary conditions in a smooth domain of . The KS model consists in a coupled system of partial differential equations. In particular, we also treat the unique continuation of the solution and the persistence of continuous dependence on the initial data for the continued solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI