Learned Image Compression with Dual-Branch Encoder and Conditional Information Coding

计算机科学 解码方法 熵编码 人工智能 编解码器 编码器 条件熵 数据压缩 熵(时间箭头) 算术编码 图像压缩 模式识别(心理学) 算法 上下文自适应二进制算术编码 图像处理 图像(数学) 最大熵原理 物理 操作系统 量子力学 计算机硬件
作者
Haisheng Fu,Feng Liang,Jie Liang,Zhenman Fang,Guohe Zhang,Jingning Han
标识
DOI:10.1109/dcc58796.2024.00025
摘要

Recent advancements in deep learning-based image compression are notable. However, prevalent schemes that employ a serial context-adaptive entropy model to enhance rate-distortion (R-D) performance are markedly slow. Furthermore, the complexities of the encoding and decoding networks are substantially high, rendering them unsuitable for some practical applications. In this paper, we propose two techniques to balance the trade-off between complexity and performance. First, we introduce two branching coding networks to independently learn a low-resolution latent representation and a high-resolution latent representation of the input image, discriminatively representing the global and local information therein. Second, we utilize the high-resolution latent representation as conditional information for the low-resolution latent representation, furnishing it with global information, thus aiding in the reduction of redundancy between low-resolution information. We do not utilize any serial entropy models. Instead, we employ a parallel channel-wise auto-regressive entropy model for encoding and decoding low-resolution and high-resolution latent representations. Experiments demonstrate that our method is approximately twice as fast in both encoding and decoding compared to the parallelizable checkerboard context model, and it also achieves a 1.2% improvement in R-D performance compared to state-of-the-art learned image compression schemes. Our method also outperforms classical image codecs including H.266/VVC-intra (4:4:4) and some recent learned methods in rate-distortion performance, as validated by both PSNR and MS-SSIM metrics on the Kodak dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wz发布了新的文献求助10
刚刚
刚刚
SciGPT应助hzlong采纳,获得10
刚刚
1秒前
H_完成签到 ,获得积分10
2秒前
武雨寒发布了新的文献求助10
2秒前
周哲完成签到 ,获得积分20
3秒前
4秒前
5秒前
wtu完成签到,获得积分10
7秒前
aa完成签到 ,获得积分10
8秒前
Tttting完成签到,获得积分20
8秒前
8秒前
scl完成签到,获得积分10
9秒前
9秒前
10秒前
萨尔莫斯发布了新的文献求助10
11秒前
dingsw发布了新的文献求助10
11秒前
所所应助烂漫访琴采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
ti完成签到,获得积分10
15秒前
犹豫紫丝发布了新的文献求助10
15秒前
15秒前
16秒前
Yang发布了新的文献求助200
16秒前
自由小蚂蚁完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
Serein发布了新的文献求助10
18秒前
19秒前
鼠小姐应助贰什柒采纳,获得10
19秒前
白羽发布了新的文献求助10
20秒前
hzlong发布了新的文献求助10
20秒前
meilongyong发布了新的文献求助10
20秒前
21秒前
小陆发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800648
求助须知:如何正确求助?哪些是违规求助? 3345931
关于积分的说明 10327683
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627