A Causality-Informed Graph Intervention Model for Pancreatic Cancer Early Diagnosis

概化理论 判别式 计算机科学 人工智能 机器学习 图形 胰腺癌 一般化 成对比较 数据挖掘 理论计算机科学 医学 癌症 数学 内科学 数学分析 统计
作者
Xinyue Li,Rui Guo,Hongzhang Zhu,Tao Chen,Xiaohua Qian
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (9): 4675-4685 被引量:1
标识
DOI:10.1109/tai.2024.3395586
摘要

Pancreatic cancer is a highly fatal cancer type. Patients are typically in an advanced stage at their first diagnosis, mainly due to the absence of distinctive early-stage symptoms and lack of effective early diagnostic methods. In this work, we propose an automated method for pancreatic cancer diagnosis using non-contrast CT, taking advantage of its widespread availability in clinic. Currently, a primary challenge limiting the clinical value of intelligent systems is low generalization, i.e., the difficulty of achieving stable performance across datasets from different medical sources. To address this challenge, a novel causality-informed graph intervention model is developed based on a multi-instance-learning framework integrated with graph neural network for the extraction of local discriminative features. Within this model, we develop a graph causal intervention scheme with three levels of intervention for graph nodes, structures, and representations. This scheme systematically suppresses non-causal factors and thus lead to generalizable predictions. Specifically, first, a target node perturbation strategy is designed to capture target-region features. Second, a causal-structure separation module is developed to automatically identify the causal graph structures for obtaining stable representations of whole target regions. Third, a graph-level feature consistency mechanism is proposed to extract invariant features. Comprehensive experiments on large-scale datasets validated the promising early-diagnosis performance of our proposed model. The model generalizability was confirmed on three independent datasets, where the classification accuracy reached 86.3%, 80.4% and 82.2%, respectively. Overall, we provide a valuable potential tool for pancreatic cancer screening and early diagnosis. Our source codes will be released at https://github.com/SJTUBME-QianLab/GraphIntervention-PC .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fgjkl发布了新的文献求助10
1秒前
melody发布了新的文献求助10
6秒前
ss应助爱听歌凤灵采纳,获得10
7秒前
丘比特应助MTF采纳,获得10
8秒前
Suniex完成签到,获得积分10
8秒前
14秒前
18秒前
hzs发布了新的文献求助200
19秒前
fgjkl完成签到 ,获得积分10
20秒前
金阿垚在科研应助LT采纳,获得10
21秒前
22秒前
Nia发布了新的文献求助10
24秒前
杨艳完成签到 ,获得积分10
26秒前
火星上的羽毛完成签到,获得积分10
27秒前
28秒前
wyx发布了新的文献求助10
29秒前
草莓气泡完成签到,获得积分10
29秒前
我是老大应助wyx采纳,获得10
36秒前
Lucas应助如意的书南采纳,获得10
38秒前
ljycasey完成签到,获得积分10
38秒前
CodeCraft应助particularc采纳,获得10
41秒前
42秒前
LT发布了新的文献求助10
43秒前
香蕉觅云应助闪闪雅阳采纳,获得10
43秒前
43秒前
画舫完成签到,获得积分10
47秒前
科研通AI5应助hyshen采纳,获得10
47秒前
qw发布了新的文献求助10
48秒前
49秒前
fankun发布了新的文献求助10
49秒前
50秒前
hzs完成签到,获得积分10
52秒前
金色琥珀完成签到,获得积分10
53秒前
54秒前
particularc发布了新的文献求助10
55秒前
56秒前
Plaitkol完成签到,获得积分10
58秒前
58秒前
shadow发布了新的文献求助10
58秒前
凝凝小发布了新的文献求助10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324256
关于积分的说明 10217657
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798513
科研通“疑难数据库(出版商)”最低求助积分说明 758401