Generative Enzyme Design Guided by Functionally Important Sites and Small-Molecule Substrates

生成语法 小分子 化学 计算生物学 生成设计 生物化学 计算机科学 生物 材料科学 人工智能 复合材料 相容性(地球化学)
作者
Zhenqiao Song,Yunlong Zhao,Wenxian Shi,Wengong Jin,Yang Yang,Lei Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2405.08205
摘要

Enzymes are genetically encoded biocatalysts capable of accelerating chemical reactions. How can we automatically design functional enzymes? In this paper, we propose EnzyGen, an approach to learn a unified model to design enzymes across all functional families. Our key idea is to generate an enzyme's amino acid sequence and their three-dimensional (3D) coordinates based on functionally important sites and substrates corresponding to a desired catalytic function. These sites are automatically mined from enzyme databases. EnzyGen consists of a novel interleaving network of attention and neighborhood equivariant layers, which captures both long-range correlation in an entire protein sequence and local influence from nearest amino acids in 3D space. To learn the generative model, we devise a joint training objective, including a sequence generation loss, a position prediction loss and an enzyme-substrate interaction loss. We further construct EnzyBench, a dataset with 3157 enzyme families, covering all available enzymes within the protein data bank (PDB). Experimental results show that our EnzyGen consistently achieves the best performance across all 323 testing families, surpassing the best baseline by 10.79% in terms of substrate binding affinity. These findings demonstrate EnzyGen's superior capability in designing well-folded and effective enzymes binding to specific substrates with high affinities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yang完成签到,获得积分10
2秒前
CodeCraft应助傅朝西采纳,获得10
2秒前
普鲁卡因发布了新的文献求助10
2秒前
shan完成签到,获得积分10
3秒前
jenningseastera应助fufu采纳,获得10
4秒前
5秒前
丁鹏笑完成签到 ,获得积分0
7秒前
核桃发布了新的文献求助10
7秒前
8秒前
8秒前
PhD-SCAU完成签到,获得积分10
8秒前
9秒前
10秒前
五月节完成签到,获得积分10
10秒前
任性万怨完成签到,获得积分10
13秒前
dabaigou应助何渡星舟采纳,获得10
13秒前
斯文败类应助迷路枫采纳,获得10
14秒前
15秒前
粉面菜蛋完成签到,获得积分10
16秒前
Singularity应助HaomingZhang采纳,获得30
16秒前
FFLY完成签到,获得积分10
16秒前
冰魂应助pxn采纳,获得10
18秒前
粉面菜蛋发布了新的文献求助10
18秒前
科研通AI5应助Freya采纳,获得10
19秒前
24秒前
25秒前
HaomingZhang完成签到,获得积分10
25秒前
lrll完成签到,获得积分10
26秒前
27秒前
27秒前
李Sir完成签到,获得积分10
29秒前
29秒前
29秒前
迷路枫发布了新的文献求助10
30秒前
yang关注了科研通微信公众号
33秒前
于忠波发布了新的文献求助10
34秒前
WWW7发布了新的文献求助10
35秒前
香蕉觅云应助Archer采纳,获得10
36秒前
幸福的绮露完成签到,获得积分10
37秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Governing Marine Living Resources in the Polar Regions 200
Bazaar to piazza. Islamic trade and Italian art, 1300–1600 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824511
求助须知:如何正确求助?哪些是违规求助? 3366824
关于积分的说明 10442744
捐赠科研通 3086123
什么是DOI,文献DOI怎么找? 1697727
邀请新用户注册赠送积分活动 816458
科研通“疑难数据库(出版商)”最低求助积分说明 769707