Neural Machine Translation for Low-Resource Languages from a Chinese-centric Perspective: A Survey

透视图(图形) 计算机科学 机器翻译 资源(消歧) 翻译(生物学) 自然语言处理 语言学 人工智能 生物 哲学 计算机网络 生物化学 信使核糖核酸 基因
作者
Jinyi Zhang,Ke Su,Haowei Li,Jiannan Mao,Ye Tian,Feng Wen,Chong Guo,Tadahiro Matsumoto
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:23 (6): 1-60 被引量:2
标识
DOI:10.1145/3665244
摘要

Machine translation–the automatic transformation of one natural language (source language) into another (target language) through computational means–occupies a central role in computational linguistics and stands as a cornerstone of research within the field of Natural Language Processing (NLP). In recent years, the prominence of Neural Machine Translation (NMT) has grown exponentially, offering an advanced framework for machine translation research. It is noted for its superior translation performance, especially when tackling the challenges posed by low-resource language pairs that suffer from a limited corpus of data resources. This article offers an exhaustive exploration of the historical trajectory and advancements in NMT, accompanied by an analysis of the underlying foundational concepts. It subsequently provides a concise demarcation of the unique characteristics associated with low-resource languages and presents a succinct review of pertinent translation models and their applications, specifically within the context of languages with low-resources. Moreover, this article delves deeply into machine translation techniques, highlighting approaches tailored for Chinese-centric low-resource languages. Ultimately, it anticipates upcoming research directions in the realm of low-resource language translation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子发布了新的文献求助10
刚刚
帅气小飒完成签到 ,获得积分10
刚刚
xuan发布了新的文献求助10
1秒前
共享精神应助自信采纳,获得10
2秒前
3秒前
希望天下0贩的0应助杨易采纳,获得10
3秒前
汉堡包应助明亮的大白采纳,获得10
3秒前
3秒前
南宫愚志发布了新的文献求助10
4秒前
4秒前
Ava应助笑点低代萱采纳,获得10
5秒前
6秒前
咕咕完成签到,获得积分10
7秒前
蛮不讲李发布了新的文献求助10
7秒前
chxxx发布了新的文献求助10
7秒前
小马甲应助平常的灭绝采纳,获得10
8秒前
8秒前
Jgogo完成签到,获得积分10
8秒前
Thea完成签到,获得积分20
9秒前
荼蘼完成签到,获得积分10
9秒前
梓然完成签到,获得积分10
9秒前
小蘑菇应助DJANGO采纳,获得10
9秒前
10秒前
10秒前
Jgogo发布了新的文献求助10
11秒前
王小新完成签到,获得积分10
11秒前
123完成签到,获得积分10
13秒前
光亮秋白完成签到,获得积分10
13秒前
萤照夜清发布了新的文献求助10
14秒前
等待冬亦应助合适小刺猬采纳,获得20
14秒前
烟花应助运气啊采纳,获得10
14秒前
fox完成签到 ,获得积分10
15秒前
QY发布了新的文献求助20
15秒前
15秒前
16秒前
yangjinru完成签到 ,获得积分10
16秒前
朱向阳完成签到,获得积分10
17秒前
ok123完成签到 ,获得积分10
17秒前
lixiang发布了新的文献求助10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
Strutts and the Arkwrights, 1758-1830 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836946
求助须知:如何正确求助?哪些是违规求助? 3379179
关于积分的说明 10507869
捐赠科研通 3099037
什么是DOI,文献DOI怎么找? 1706667
邀请新用户注册赠送积分活动 821161
科研通“疑难数据库(出版商)”最低求助积分说明 772472