Three Stages Recursive Differential Grouping for Large-Scale Global Optimization

计算机科学 比例(比率) 差速器(机械装置) 地理 地图学 工程类 航空航天工程
作者
Li Zheng,Gang Xu,Wenbin Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 109734-109746 被引量:1
标识
DOI:10.1109/access.2023.3321068
摘要

Cooperative co-evolution (CC) is an effective framework for solving large-scale global optimization (LSGO) problems by using the "divide-and-conquer" method. However, the decomposition stage faces the challenges of either insufficient decomposition accuracy or extremely high computational cost to achieve correct decomposition. The significant amount of resources consumed during the decomposition stage greatly affects optimization. A decomposition method called Recursive Differential Grouping (RDG) has shown impressive results in solving large-scale continuous optimization problems. To improve the performance of RDG and reduce the resource consumption during decomposition, this paper proposes the Three Stages Recursive Differential Grouping (TSRDG) method. The first stage is the determination of whether a function is fully separable or not. In the second stage, separable variables are divided into one group and non-separable variables are divided into another group. In the third stage, this study identifies the interacting decision variables that are not in a separable group and reuses the effective information that was gained in the first two stages. Compared with some state-of-the-art methods, TSRDG has an effective strategy for decomposing functions. Moreover, it avoids the resource consumption of identifying the interaction between separable and non-separable variables in recursions. Effective historical information is fully exploited throughout the process of variable decomposition. Simulation experiments on the benchmark functions of CEC'2010 and CEC'2013 demonstrate that TSRDG achieves higher decomposition accuracy and lower computational cost than state-of-the-art decomposition methods. The experiments show that TSRDG is a promising algorithm in LSGO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycccccc完成签到 ,获得积分10
刚刚
刚刚
余小鱼发布了新的文献求助10
1秒前
积极晓兰完成签到,获得积分10
1秒前
yunyang发布了新的文献求助10
3秒前
天天快乐应助顺利绿真采纳,获得10
4秒前
徐老师完成签到,获得积分10
5秒前
yqf完成签到,获得积分10
10秒前
科研通AI5应助研友_8Y26PL采纳,获得10
12秒前
adam完成签到,获得积分10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
Xiaoxiao应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
Xiaoxiao应助科研通管家采纳,获得10
13秒前
13秒前
Xiaoxiao应助科研通管家采纳,获得10
13秒前
大个应助十一采纳,获得10
15秒前
15秒前
@你。完成签到 ,获得积分10
18秒前
reap发布了新的文献求助10
19秒前
19秒前
20秒前
乐观寻绿完成签到,获得积分10
22秒前
24秒前
25秒前
Kai完成签到,获得积分10
26秒前
reap完成签到,获得积分10
26秒前
26秒前
26秒前
怨念深重完成签到,获得积分10
27秒前
顺利绿真发布了新的文献求助10
28秒前
活泼小霜发布了新的文献求助10
29秒前
郭政飞发布了新的文献求助10
29秒前
29秒前
kk发布了新的文献求助10
30秒前
Chen发布了新的文献求助10
31秒前
32秒前
dracovu完成签到,获得积分10
34秒前
公冶愚志发布了新的文献求助10
34秒前
搜集达人应助ayynl采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793366
求助须知:如何正确求助?哪些是违规求助? 3338184
关于积分的说明 10288860
捐赠科研通 3054723
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804202
科研通“疑难数据库(出版商)”最低求助积分说明 761760