Nomogram Based on Body Composition and Prognostic Nutritional Index Predicts Survival After Curative Resection of Gastric Cancer

列线图 医学 内科学 癌症 切除术 肿瘤科 外科
作者
Chao Tao,Wei Hong,Pengzhan Yin,Shujian Wu,Lifang Fan,Zihao Lei,Yongmei Yu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (5): 1940-1949 被引量:10
标识
DOI:10.1016/j.acra.2023.10.057
摘要

Rationale and Objectives This study aimed to identify independent prognostic factors for gastric cancer (GC) patients after curative resection using quantitative computed tomography (QCT) combined with prognostic nutritional index (PNI), and to develop a nomogram prediction model for individualized prognosis. Materials and Methods This study retrospectively analyzed 119 patients with GC who underwent curative resection from January 2016 to March 2018. The patients' preoperative clinical pathological data were recorded, and all patients underwent QCT scans before and after curative resection to obtain QCT parameters: bone mineral density (BMD), skeletal muscle area (SMA), visceral fat area (VFA), subcutaneous fat area (SFA) and CT fat fraction (CTFF), then relative rate of change in each parameter (ΔBMD, ΔSMA, ΔVFA, ΔSFA, ΔCTFF) was calculated after time normalization. Multivariate Cox proportional hazards was used to establish a nomogram model that based on independent prognostic factors. The concordance index (C-index), area under the time-dependent receiver operating characteristic (ROC) curve and clinical decision curve were used to evaluate the predictive performance and clinical benefit of the nomogram model. Results This study found that ΔCTFF, ΔVFA, ΔBMD and PNI are independent prognostic factors for overall survival (OS) (hazard ratio: 1.034, 0.895, 0.976, 2.951, respectively, all p < 0.05). The established nomogram model could predict the area under the ROC curve of OS at 1, 3 and 5 years as 0.816, 0.815 and 0.881, respectively. The C-index was 0.743 (95% CI, 0.684–0.801), and the decision curve analysis showed that this model has good clinical net benefit. Conclusion The nomogram model based on body composition and PNI is reliable in predicting the individualized survival of underwent curative resection for GC patients. This study aimed to identify independent prognostic factors for gastric cancer (GC) patients after curative resection using quantitative computed tomography (QCT) combined with prognostic nutritional index (PNI), and to develop a nomogram prediction model for individualized prognosis. This study retrospectively analyzed 119 patients with GC who underwent curative resection from January 2016 to March 2018. The patients' preoperative clinical pathological data were recorded, and all patients underwent QCT scans before and after curative resection to obtain QCT parameters: bone mineral density (BMD), skeletal muscle area (SMA), visceral fat area (VFA), subcutaneous fat area (SFA) and CT fat fraction (CTFF), then relative rate of change in each parameter (ΔBMD, ΔSMA, ΔVFA, ΔSFA, ΔCTFF) was calculated after time normalization. Multivariate Cox proportional hazards was used to establish a nomogram model that based on independent prognostic factors. The concordance index (C-index), area under the time-dependent receiver operating characteristic (ROC) curve and clinical decision curve were used to evaluate the predictive performance and clinical benefit of the nomogram model. This study found that ΔCTFF, ΔVFA, ΔBMD and PNI are independent prognostic factors for overall survival (OS) (hazard ratio: 1.034, 0.895, 0.976, 2.951, respectively, all p < 0.05). The established nomogram model could predict the area under the ROC curve of OS at 1, 3 and 5 years as 0.816, 0.815 and 0.881, respectively. The C-index was 0.743 (95% CI, 0.684–0.801), and the decision curve analysis showed that this model has good clinical net benefit. The nomogram model based on body composition and PNI is reliable in predicting the individualized survival of underwent curative resection for GC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wos完成签到,获得积分10
刚刚
认真的向卉完成签到 ,获得积分10
1秒前
1秒前
鸣笛应助wfy采纳,获得30
2秒前
2秒前
lelele发布了新的文献求助10
2秒前
韶冥茗发布了新的文献求助10
2秒前
无私乐驹完成签到,获得积分10
3秒前
传奇3应助Linly采纳,获得10
3秒前
3秒前
刘呦呦发布了新的文献求助10
3秒前
火山口喝咖啡关注了科研通微信公众号
3秒前
伶俐送终发布了新的文献求助10
4秒前
桐桐应助小孩儿采纳,获得10
4秒前
星星发布了新的文献求助10
4秒前
Kim_Hou发布了新的文献求助10
4秒前
5秒前
Sun发布了新的文献求助10
5秒前
小晋完成签到,获得积分10
6秒前
6秒前
6秒前
huasheng发布了新的文献求助10
6秒前
快乐的忆山完成签到,获得积分10
6秒前
LP发布了新的文献求助10
7秒前
7秒前
liaodongjun完成签到,获得积分10
8秒前
科研通AI5应助10采纳,获得10
8秒前
ddd完成签到,获得积分10
8秒前
韶冥茗完成签到,获得积分10
9秒前
华仔应助enen采纳,获得10
9秒前
9秒前
酸柠檬本檬完成签到,获得积分10
10秒前
10秒前
L坨坨发布了新的文献求助10
10秒前
10秒前
充电宝应助仁爱的咖啡采纳,获得10
11秒前
小马发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910787
求助须知:如何正确求助?哪些是违规求助? 3456483
关于积分的说明 10889923
捐赠科研通 3182768
什么是DOI,文献DOI怎么找? 1759314
邀请新用户注册赠送积分活动 850819
科研通“疑难数据库(出版商)”最低求助积分说明 792280