UAV Hyperspectral Data Combined with Machine Learning for Winter Wheat Canopy SPAD Values Estimation

红边 高光谱成像 植被(病理学) 天蓬 冬小麦 支持向量机 回归分析 环境科学 逐步回归 数学 遥感 统计 计算机科学 农学 人工智能 植物 地理 生物 医学 病理
作者
Qi Wang,Xiaokai Chen,Huayi Meng,Huiling Miao,Shiyu Jiang,Qingrui Chang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (19): 4658-4658 被引量:9
标识
DOI:10.3390/rs15194658
摘要

Chlorophyll is an important indicator for monitoring crop growth and is vital for agricultural management. Therefore, rapid and accurate estimation of chlorophyll content is important for decision support in precision agriculture to accurately monitor the SPAD (Soil and Plant Analyzer Development) values of winter wheat. This study used winter wheat to obtain canopy reflectance based on UAV hyperspectral data and to calculate different vegetation indices and red-edge parameters. The best-performing vegetation indices and red-edge parameters were selected by Pearson correlation analysis and multiple stepwise regression (MSR). SPAD values were estimated using a combination of vegetation indices, vegetation indices and red-edge parameters as model factors, two types of machine learning (ML), a support vector machine (SVM), and a backward propagation neural network (BPNN), and partial least squares regression (PLSR) for four growth stages of winter wheat, and validated using independent samples. The results show that for the same data source, the best vegetation indices or red-edge parameters for estimating SPAD values differed at different growth stages and that combining vegetation indices with red-edge parameters gave better estimates than using only vegetation indices as an input factor for estimating SPAD values. There is no significant difference between PLSR, SVM, and BPNN methods in estimating SPAD values, with better stability of the estimated models using machine learning methods. Different growth stages have a large impact on winter wheat SPAD values estimates, with the accuracy of the four growth stage models increasing in the following order: booting < heading < filling < flowering. This study shows that using a combination of vegetation indices and red-edge parameters can improve SPAD values estimates compared to using vegetation indices alone. In the future, the choice of appropriate factors and methods will need to be considered when constructing models to estimate crop SPAD values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝豆子完成签到 ,获得积分10
1秒前
xr完成签到 ,获得积分10
2秒前
小熊完成签到,获得积分10
2秒前
3秒前
风中冰香应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
QiuYue应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
研友_8Qqy48完成签到 ,获得积分10
4秒前
changping应助科研通管家采纳,获得100
4秒前
考啥都上岸完成签到,获得积分10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
无限苞络应助科研通管家采纳,获得10
4秒前
抗体药物偶联完成签到,获得积分10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
那时花开应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
酒爱泡芙完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
风中冰香应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Xingkun_li完成签到,获得积分10
7秒前
sin发布了新的文献求助10
7秒前
华仔应助鑫xin采纳,获得10
8秒前
张强完成签到,获得积分10
9秒前
Orange应助小邸采纳,获得10
10秒前
ok123完成签到 ,获得积分10
10秒前
可靠的千凝完成签到 ,获得积分10
11秒前
11秒前
Zhe完成签到,获得积分10
15秒前
jnoker完成签到,获得积分10
16秒前
17秒前
17秒前
19秒前
忘崽子小拳头完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294178
求助须知:如何正确求助?哪些是违规求助? 4444140
关于积分的说明 13832167
捐赠科研通 4328118
什么是DOI,文献DOI怎么找? 2375950
邀请新用户注册赠送积分活动 1371278
关于科研通互助平台的介绍 1336386