Benefit of Using Both Ultrasound Imaging and Clinical Information for Predicting Malignant Soft Tissue Tumors

列线图 医学 超声波 放射科 接收机工作特性 临床实习 超声科 肿瘤科 内科学 家庭医学
作者
Yusen Zhang,Chenyang Zhao,Heng Lv,Licong Dong,Lu Xie,Yun Tian,Wangjie Wu,Haiyu Luo,Qi Yang,Li Liu,Desheng Sun,Haiqin Xie
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:49 (12): 2459-2468 被引量:1
标识
DOI:10.1016/j.ultrasmedbio.2023.08.005
摘要

Ultrasonography (US) is the primary imaging method for soft tissue tumors (STTs), the diagnostic performance of which still requires improvement. To achieve an accurate evaluation of STTs, we built the diagnostic nomogram for STTs using the clinical and US features of patients with STTs.A total of 613 patients with 195 malignant and 418 benign STTs were retrospectively recruited. We used a blend of clinical and ultrasonic features, as well as exclusively US features, to develop two distinct diagnostic models for STTs: the clinical-US model and the US-only model, respectively. The two models were evaluated and compared by measuring their areas under the receiver operating characteristic curve (AUC), calibration, integrated discrimination improvement (IDI) and decision curve analysis. The performance of the clinical-US model was also compared with that of two radiologists.The clinical-US model had better diagnostic performance than the model based on US imaging features alone (AUCs of the clinical-US and US-only models: 0.95 [0.93-0.97] vs. 0.89 [0.87-0.92], p < 0.001; IDI of the two models: 0.15 ± 0.03, p < 0.001). The clinical-US model was also superior to the two radiologists in diagnosing STTs (AUCs of clinical-US model and two radiologists: 0.95 [0.93-0.97] vs. 0.79 [0.75-0.82] and 0.83 [0.80-0.85], p < 0.001).The diagnostic model based on clinical and US imaging features had high diagnostic performance in STTs, which could help identify malignant STTs for radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助fuchao采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
lalala发布了新的文献求助10
2秒前
cc完成签到,获得积分20
2秒前
pcr163应助Yuzu采纳,获得100
2秒前
LaTeXer应助萝卜采纳,获得200
3秒前
3秒前
李苗苗完成签到,获得积分20
4秒前
Dabao发布了新的文献求助10
4秒前
maybe发布了新的文献求助10
4秒前
难过大神完成签到,获得积分10
5秒前
5秒前
深情安青应助喻踏歌采纳,获得10
5秒前
杜杨帆完成签到,获得积分10
5秒前
5秒前
cc发布了新的文献求助10
6秒前
乐乐应助范晓阳采纳,获得10
6秒前
6秒前
bkagyin应助jiyy采纳,获得10
6秒前
周周发布了新的文献求助10
6秒前
7秒前
汉堡包应助如约而至采纳,获得10
7秒前
Owen应助活泼的百川采纳,获得10
7秒前
7秒前
静静发布了新的文献求助10
7秒前
shadowshape发布了新的文献求助10
7秒前
hp关闭了hp文献求助
7秒前
pan完成签到,获得积分10
8秒前
8秒前
李苗苗发布了新的文献求助10
9秒前
ajie发布了新的文献求助30
9秒前
田様应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得30
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
简明儿童少年国际神经精神访谈(MINI-KID)中文版 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025691
求助须知:如何正确求助?哪些是违规求助? 3565476
关于积分的说明 11349441
捐赠科研通 3296545
什么是DOI,文献DOI怎么找? 1815771
邀请新用户注册赠送积分活动 890193
科研通“疑难数据库(出版商)”最低求助积分说明 813374