Managing mixed traffic at signalized intersections: An adaptive signal control and CAV coordination system based on deep reinforcement learning

强化学习 计算机科学 交叉口(航空) 燃料效率 汽车工程 实时计算 模拟 人工智能 运输工程 工程类
作者
Duowei Li,Feng Zhu,Jianping Wu,Yiik Diew Wong,Tianyi Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121959-121959 被引量:15
标识
DOI:10.1016/j.eswa.2023.121959
摘要

Managing the mixed traffic involving connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs) at a signalized intersection has become a concern of researchers. However, the performances of most existing control methods are limited, especially when CAV penetration rate is low, since they fail to make a better trade-off between safety and operational efficiency for both CAVs and HVs. To this end, this study proposes a deep reinforcement learning (DRL) powered control system for the mixed traffic at signalized intersections, which aims to optimize operational efficiency of both CAVs and HVs while assuring safety and reducing interference on HVs’ driving habits. The system adopts an adaptive traffic signal control strategy and an efficient CAV control policy with a passing rule proposed as a link in between. The traffic signal control strategy allows traffic light to adaptively adjust its phase and duration based on real-time traffic information, while the CAV control policy permits the CAVs meeting certain safety constraints to form platoons and pass through the intersection in a coordinated manner regardless of traffic signals. As an efficient DRL algorithm, Deep Q-Network (DQN) is adopted to adaptively control the signals and implement CAV coordination. The proposed system is examined on Simulation of Urban Mobility (SUMO), given different CAV penetration rates and traffic conditions. It is found that the proposed system not only outperforms the state-of-the-art control methods on reducing travel time and fuel consumption under low CAV penetration rate, but also enlarges its advantages with the increase of CAV penetration rate. In certain traffic scenarios, the proposed system can even achieve a maximum reduction of travel time by 37.33% and fuel consumption by 15.95%, in comparison to the existing method with the best performance. Besides, to some extent, the comparisons between the performances of CAVs and HVs demonstrate certain benefits of introducing CAVs into the mixed traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鳄鱼一只完成签到,获得积分10
1秒前
遍地捡糖不要钱完成签到 ,获得积分10
5秒前
葱饼完成签到 ,获得积分10
8秒前
四十四次日落完成签到 ,获得积分10
15秒前
白昼の月完成签到 ,获得积分0
18秒前
goodsheep完成签到 ,获得积分10
19秒前
刘清河完成签到 ,获得积分10
19秒前
崩溃完成签到,获得积分10
25秒前
冷静水蓝完成签到 ,获得积分10
25秒前
热心的飞风完成签到 ,获得积分10
31秒前
efren1806完成签到,获得积分10
38秒前
钟声完成签到,获得积分0
40秒前
nannan完成签到 ,获得积分10
44秒前
ljy2015完成签到 ,获得积分10
45秒前
Shandongdaxiu完成签到 ,获得积分10
46秒前
科研狗的春天完成签到 ,获得积分10
46秒前
222123完成签到,获得积分10
50秒前
仁和完成签到,获得积分10
53秒前
诗蕊完成签到 ,获得积分10
55秒前
激昂的语琴完成签到,获得积分10
56秒前
学术完成签到 ,获得积分10
57秒前
赵勇完成签到 ,获得积分10
58秒前
咯咯咯完成签到 ,获得积分10
59秒前
喝酸奶不舔盖完成签到 ,获得积分10
1分钟前
猴子请来的救兵完成签到 ,获得积分10
1分钟前
展会恩完成签到,获得积分10
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
1分钟前
Michelle发布了新的文献求助10
1分钟前
舒适的天奇完成签到 ,获得积分10
1分钟前
ng完成签到 ,获得积分10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
不如看海完成签到 ,获得积分10
1分钟前
Grace_Willis完成签到,获得积分10
1分钟前
明眸完成签到 ,获得积分10
1分钟前
Young完成签到 ,获得积分10
1分钟前
阳炎完成签到,获得积分10
1分钟前
1分钟前
喜悦的香之完成签到 ,获得积分10
1分钟前
chenbin完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336777
关于积分的说明 10282126
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468