Vehicle Trajectory Prediction Considering Multi-feature Independent Encoding Based on Graph Neural Network

弹道 计算机科学 特征(语言学) 编码(内存) 图形 编码 编码器 人工智能 数据挖掘 理论计算机科学 语言学 生物化学 基因 操作系统 物理 哲学 化学 天文
作者
Xiao Su,Xiaolan Wang,Haonan Li,Xin Xu,Yansong Wang
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:17 (1): 36-44
标识
DOI:10.2174/0122127976268634230929182355
摘要

Background: Today, self-driving cars are already on the roads. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of an autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. Although there are many patents and articles related to trajectory prediction, the accuracy of trajectory prediction still needs to be improved. Objective: This paper aimed to propose a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). Methods: MFIE is an independently coded trajectory prediction algorithm that consists of a spacetime interaction module and trajectory prediction module, and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders are used to encode the trajectory feature, motion feature, and road constraint feature independently. The three hidden features are spliced into a tensor, and the LSTM decoder is used to predict the future trajectory. Results: On datasets, such as Apollo and NGSIM, the proposed method has shown lower prediction error than traditional model-driven and data-driven methods, and predicted more target vehicles at the same time. It can provide a basis for vehicle path planning on highways and urban roads, and it is of great significance to the safety of autonomous driving. Conclusion: This paper has proposed a multi-feature independent encoders’ trajectory prediction data-driven algorithm, and the effectiveness of the algorithm is verified with a public dataset. The trajectory prediction algorithm considering multi-feature independent encoders provides some reference value for decision planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林lin发布了新的文献求助10
刚刚
小蘑菇应助香蕉梨愁采纳,获得10
1秒前
刘隅发布了新的文献求助10
1秒前
88发布了新的文献求助10
1秒前
2秒前
不敢装睡发布了新的文献求助10
2秒前
易川完成签到,获得积分10
2秒前
Raye发布了新的文献求助10
3秒前
111发布了新的文献求助10
4秒前
4秒前
8秒前
orixero应助蜜CC采纳,获得10
9秒前
9秒前
lili完成签到,获得积分10
10秒前
H的流年发布了新的文献求助10
10秒前
清脆的映冬完成签到 ,获得积分10
11秒前
11秒前
12秒前
CodeCraft应助88采纳,获得10
12秒前
13秒前
清仔发布了新的文献求助10
13秒前
香蕉觅云应助zz采纳,获得10
13秒前
你倒是发啊完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
包子完成签到,获得积分10
19秒前
19秒前
爆米花应助STP顶峰相见采纳,获得10
20秒前
88完成签到,获得积分20
21秒前
aaa发布了新的文献求助10
21秒前
Lee完成签到,获得积分10
21秒前
22秒前
蜜CC发布了新的文献求助10
22秒前
严昌发布了新的文献求助10
22秒前
彩色的盼秋完成签到,获得积分10
22秒前
多年以后完成签到,获得积分10
24秒前
24秒前
25秒前
wanci应助YFL采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871019
求助须知:如何正确求助?哪些是违规求助? 3413107
关于积分的说明 10683160
捐赠科研通 3137545
什么是DOI,文献DOI怎么找? 1731121
邀请新用户注册赠送积分活动 834564
科研通“疑难数据库(出版商)”最低求助积分说明 781203