Research on cuttings image segmentation method based on improved MultiRes-Unet++ with attention mechanism

人工智能 分割 计算机科学 图像分割 模式识别(心理学) 计算机视觉 卷积神经网络 切割 基于分割的对象分类 尺度空间分割 植物 生物
作者
Fengcai Huo,Kaiming Liu,Hongli Dong,Weijian Ren,Shuai Dong
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3550151/v1
摘要

Abstract Cuttings logging is an important technology in petroleum exploration and production. It can be used to identify rock types, oil and gas properties, and reservoir features. However, the cuttings collected during cuttings logging are often small and few. Meanwhile, the surface color of cuttings is dark and the boundary is fuzzy. Traditional image segmentation methods have low accuracy. So it is difficult to identify and classify cuttings. Therefore, it is important to improve the accuracy of cuttings image segmentation. A deep learning-based cuttings image segmentation method is proposed in this paper. Firstly, the MultiRes module concept based on the U-Net + + segmentation model is introduced in this paper, which proposes an improved end-to-end U-Net + + image semantic segmentation model (called MultiRes-UNet++). Secondly, batch normalization (BN) into the input part of each layer's feature convolution layer is introduced too. Finally, a convolutional attention mechanism in the improved MultiRes-UNet + + segmentation model is introduced. Experimental results show that the accuracy (ACC) between the segmentation results and the original image labels is 0.8791, the dice coefficient (DICE) value is 0.8785, and the intersection over union (IOU) is 0.7833. Compared with existing neural network segmentation algorithms, the performance is improved by about 5%. Compared with the algorithm before the fusion of the attention mechanism, the training speed is increased by about 75.2%. Our method can provide auxiliary information for cuttings logging. It is also of great significance for subsequent rock identification and classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胜胜糖完成签到 ,获得积分10
1秒前
song完成签到 ,获得积分10
2秒前
cdercder应助科研通管家采纳,获得10
3秒前
cdercder应助科研通管家采纳,获得10
3秒前
加贝完成签到 ,获得积分10
11秒前
端庄代荷完成签到 ,获得积分10
22秒前
希望天下0贩的0应助nav采纳,获得10
29秒前
wcx完成签到,获得积分10
34秒前
LiangRen完成签到 ,获得积分10
35秒前
连难胜完成签到 ,获得积分10
37秒前
lindan完成签到 ,获得积分10
38秒前
FL完成签到 ,获得积分10
39秒前
不怕考试的赵无敌完成签到 ,获得积分10
41秒前
42秒前
46秒前
天青色等烟雨完成签到 ,获得积分10
47秒前
胖宏完成签到 ,获得积分10
47秒前
小文殊发布了新的文献求助10
52秒前
52秒前
Boris完成签到 ,获得积分10
54秒前
默11完成签到 ,获得积分10
57秒前
judy完成签到,获得积分10
57秒前
Ruoru发布了新的文献求助30
58秒前
扬帆起航完成签到 ,获得积分10
1分钟前
afli完成签到 ,获得积分0
1分钟前
艳艳宝完成签到 ,获得积分10
1分钟前
1分钟前
宁霸完成签到,获得积分0
1分钟前
yu_z完成签到 ,获得积分10
1分钟前
尔尔完成签到 ,获得积分10
1分钟前
科目三应助小文殊采纳,获得10
1分钟前
寒战完成签到 ,获得积分10
1分钟前
1分钟前
爱学习的悦悦子完成签到 ,获得积分10
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
昔昔完成签到 ,获得积分10
1分钟前
清爽笑翠完成签到 ,获得积分10
1分钟前
潘fujun完成签到 ,获得积分10
1分钟前
珹澈完成签到 ,获得积分10
1分钟前
白子双完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369672
关于积分的说明 10456756
捐赠科研通 3089294
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251