Tunable 1D van der Waals Nanostructures by Vapor–Liquid–Solid Growth

纳米线 范德瓦尔斯力 材料科学 成核 纳米技术 纳米结构 硫族元素 汽-液-固法 半导体 石墨烯 化学物理 结晶学 化学 光电子学 分子 有机化学
作者
Peter Sutter,Eli Sutter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (22): 3235-3245 被引量:4
标识
DOI:10.1021/acs.accounts.3c00502
摘要

ConspectusVapor–liquid–solid (VLS) growth using molten metal catalysts has traditionally been used to synthesize nanowires from different 3D-crystalline semiconductors. With their anisotropic structure and properties, 2D/layered semiconductors create additional opportunities for materials design when shaped into 1D nanostructures. In contrast to hexagonal 2D crystals such as graphene, h-BN, and transition metal dichalcogenides, which tend to roll up into nanotubes, VLS growth of layered group III and group IV monochalcogenides produces diverse nanowire and nanoribbon morphologies that crystallize in a bulk-like layered structure with nanometer-scale footprint and lengths exceeding tens of micrometers. In this Account, we discuss the achievable morphologies, the mechanisms governing key structural features, and the emerging functional properties of these 1D van der Waals (vdW) architectures. Recent results highlight rich sets of phenomena that qualify these materials as a distinct class of nanostructures, far beyond a mere extension of 3D-crystalline VLS nanowires to vdW crystals.The main difference between 3D- and vdW crystals, the pronounced in-plane/cross-plane anisotropy of layered materials, motivates investigating the factors governing the layer orientation. Recent research suggests that the VLS catalyst plays a key role, and that its modification via the choice of chalcogens or through modifiers added to the growth precursor can switch both the nanostructure morphology and vdW layering. In many instances, ordinary layered structures are not formed but VLS growth is dominated by morphologies─often containing a crystal defect─that present reduced or vanishing layer nucleation barriers, thus achieving fast growth and emerging as the principal synthesis product. Prominent defect morphologies include vdW bicrystals growing by a twin-plane reentrant process and chiral nanowires formed by spiral growth around an axial screw dislocation. The latter carry particular promise, e.g., for twistronics. In vdW nanowires, Eshelby twist─a progressive crystal rotation caused by the dislocation stress field─translates into interlayer twist that is precisely tunable via the wire diameter. Projected onto a helicoid vdW interface, the resulting twist moirés not only modify the electronic structure but also realize configurations without equivalent in planar systems, such as continuously variable twist and twist homojunctions.1D vdW nanostructures derive distinct functionality from both their layered structure and embedded defects. Correlated electron microscopy methods including imaging, nanobeam diffraction, as well as electron-stimulated local absorption and luminescence spectroscopies combine to an exceptionally powerful probe of this emerging functionality, identifying twist-moiré induced electronic modulations and chiral photonic modes, demonstrating the benign nature of defects in optoelectronics, and uncovering ferroelectricity via symmetry-breaking by single-layer stacking faults in vdW nanowires. Far-reaching possibilities for tuning crystal structure, morphology, and defects create a rich playground for the discovery of new functional nanomaterials based on vdW crystals. Given the prominence of defects and extensive prospects for controlling their character and placement during synthesis, 1D vdW nanostructures have the potential to cause a paradigm shift in the science of electronic materials, replacing the traditional strategy of suppressing crystal imperfections with an alternative philosophy that embraces the use of individual defects with designed properties as drivers of technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
天天快乐应助shuqi采纳,获得10
1秒前
1秒前
酷波er应助小王采纳,获得30
1秒前
彭于晏应助白莫生采纳,获得10
2秒前
3秒前
3秒前
1111发布了新的文献求助10
4秒前
听风无涯发布了新的文献求助30
5秒前
Baby关注了科研通微信公众号
7秒前
酷酷山柳发布了新的文献求助10
7秒前
7秒前
锡昱完成签到,获得积分10
7秒前
8秒前
9秒前
香蕉觅云应助难过的丹烟采纳,获得20
10秒前
12秒前
hrbykdxly完成签到,获得积分10
12秒前
13秒前
扣子发布了新的文献求助10
13秒前
在水一方应助zzdoc采纳,获得20
14秒前
15秒前
15秒前
李健的小迷弟应助丢丢采纳,获得10
17秒前
18秒前
blues完成签到,获得积分10
18秒前
18秒前
19秒前
软糖ing完成签到 ,获得积分10
20秒前
传奇3应助陈阳采纳,获得10
22秒前
22秒前
酷酷山柳完成签到,获得积分10
24秒前
25秒前
软糖ing关注了科研通微信公众号
25秒前
26秒前
26秒前
yar应助花照林采纳,获得10
26秒前
大模型应助花照林采纳,获得10
26秒前
ldj6670完成签到,获得积分10
26秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065678
求助须知:如何正确求助?哪些是违规求助? 3604318
关于积分的说明 11447079
捐赠科研通 3326797
什么是DOI,文献DOI怎么找? 1828872
邀请新用户注册赠送积分活动 899026
科研通“疑难数据库(出版商)”最低求助积分说明 819410