清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Models for Predicting Sudden Sensorineural Hearing Loss Outcome: A Systematic Review

机器学习 逻辑回归 接收机工作特性 支持向量机 人工智能 特征选择 计算机科学 预测建模 混淆 医学 病理
作者
Amirhossein Aghakhani,Milad Yousefi,Mir Saeed Yekaninejad
出处
期刊:Annals of Otology, Rhinology, and Laryngology [SAGE Publishing]
卷期号:133 (3): 268-276 被引量:6
标识
DOI:10.1177/00034894231206902
摘要

Background: Machine Learning models have been applied in various healthcare fields, including Audiology, to predict disease outcomes. The prognosis of sudden sensorineural hearing loss is difficult to predict due to the variable course of the disease. Hence, researchers have attempted to utilize ML models to predict the outcome of patients with sudden sensorineural hearing loss. The objectives of this study were to review the performance of these machine learning models and assess their applicability in real-world settings. Methods: A systematic search was conducted in PubMed, Web of Science and Scopus. Only studies that built machine learning prediction models were included, and studies that used algorithms such as logistic regression only for the purpose of adjusting for confounding variables were excluded. The risk of bias was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST). Results: After screening, a total of 7 papers were eligible for synthesis. In total, these studies built 48 ML models. The most common utilized algorithms were Logistic Regression, Support Vector Machine (SVM) and boosting. The area under the curve of the receiver operating characteristic curve ranged between 0.59 and 0.915. All of the included studies had a high risk of bias; hence there are concerns regarding their applicability. Conclusion: Although these models showed great performance and promising results, future studies are still needed before these models can be applied in a real-world setting. Future studies should employ multiple cohorts, different feature selection methods, and external validation to further validate the models’ applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
lorentzh完成签到,获得积分10
18秒前
21秒前
蝎子莱莱xth完成签到,获得积分10
25秒前
氢锂钠钾铷铯钫完成签到,获得积分10
29秒前
Square完成签到,获得积分10
33秒前
落后爆米花完成签到,获得积分10
34秒前
小程完成签到 ,获得积分10
40秒前
cc完成签到,获得积分10
50秒前
遗忘完成签到,获得积分10
57秒前
zhang完成签到 ,获得积分10
1分钟前
无幻完成签到 ,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
大可完成签到 ,获得积分10
2分钟前
大雪完成签到 ,获得积分10
2分钟前
黄淮科研小白龙完成签到 ,获得积分10
2分钟前
fyy完成签到 ,获得积分10
2分钟前
拼搏的羊青完成签到 ,获得积分10
3分钟前
jenny完成签到,获得积分10
3分钟前
jenny发布了新的文献求助10
3分钟前
小丸子完成签到 ,获得积分0
3分钟前
安琪琪完成签到 ,获得积分10
3分钟前
华仔应助虚幻心锁采纳,获得10
3分钟前
SJD完成签到,获得积分0
3分钟前
mzhang2完成签到 ,获得积分10
3分钟前
如意2023完成签到 ,获得积分10
4分钟前
01发布了新的文献求助10
4分钟前
01完成签到,获得积分10
4分钟前
严冰蝶完成签到 ,获得积分10
4分钟前
xiaofeixia完成签到 ,获得积分10
4分钟前
dagangwood完成签到 ,获得积分10
4分钟前
幽默的妍完成签到 ,获得积分10
5分钟前
zijingsy完成签到 ,获得积分10
5分钟前
牧紊完成签到 ,获得积分10
5分钟前
沈惠映完成签到 ,获得积分10
5分钟前
6分钟前
冷傲的帽子完成签到 ,获得积分10
6分钟前
虚幻心锁发布了新的文献求助10
6分钟前
蜘蛛道理完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4528421
求助须知:如何正确求助?哪些是违规求助? 3967680
关于积分的说明 12294160
捐赠科研通 3633026
什么是DOI,文献DOI怎么找? 1999709
邀请新用户注册赠送积分活动 1035887
科研通“疑难数据库(出版商)”最低求助积分说明 925584