Identifying Vital Nodes in Hypergraphs Based on Von Neumann Entropy

中心性 超图 熵(时间箭头) 计算机科学 理论计算机科学 数学 数据挖掘 离散数学 组合数学 量子力学 物理
作者
Feng Hu,Kuo Tian,Zi-Ke Zhang
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:25 (9): 1263-1263 被引量:11
标识
DOI:10.3390/e25091263
摘要

Hypergraphs have become an accurate and natural expression of high-order coupling relationships in complex systems. However, applying high-order information from networks to vital node identification tasks still poses significant challenges. This paper proposes a von Neumann entropy-based hypergraph vital node identification method (HVC) that integrates high-order information as well as its optimized version (semi-SAVC). HVC is based on the high-order line graph structure of hypergraphs and measures changes in network complexity using von Neumann entropy. It integrates s-line graph information to quantify node importance in the hypergraph by mapping hyperedges to nodes. In contrast, semi-SAVC uses a quadratic approximation of von Neumann entropy to measure network complexity and considers only half of the maximum order of the hypergraph's s-line graph to balance accuracy and efficiency. Compared to the baseline methods of hyperdegree centrality, closeness centrality, vector centrality, and sub-hypergraph centrality, the new methods demonstrated superior identification of vital nodes that promote the maximum influence and maintain network connectivity in empirical hypergraph data, considering the influence and robustness factors. The correlation and monotonicity of the identification results were quantitatively analyzed and comprehensive experimental results demonstrate the superiority of the new methods. At the same time, a key non-trivial phenomenon was discovered: influence does not increase linearly as the s-line graph orders increase. We call this the saturation effect of high-order line graph information in hypergraph node identification. When the order reaches its saturation value, the addition of high-order information often acts as noise and affects propagation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助tina采纳,获得10
1秒前
1秒前
四十五度发布了新的文献求助10
2秒前
2秒前
dmyy313235完成签到,获得积分10
2秒前
liwenjie发布了新的文献求助10
2秒前
你好发布了新的文献求助10
3秒前
科研通AI5应助ilc采纳,获得10
3秒前
4秒前
5秒前
6秒前
dmyy313235发布了新的文献求助10
7秒前
浮游应助LaTeXer采纳,获得10
8秒前
CipherSage应助野性的南蕾采纳,获得10
8秒前
爆米花应助忧郁的冷雁采纳,获得30
8秒前
霸气白卉发布了新的文献求助10
9秒前
Sunnig盈完成签到,获得积分10
9秒前
纯情烤鸭完成签到,获得积分10
10秒前
liwenjie完成签到,获得积分10
11秒前
我是老大应助丫丫采纳,获得10
11秒前
搜集达人应助微醺采纳,获得10
12秒前
洁净思枫发布了新的文献求助10
13秒前
研友_VZG7GZ应助不吃晚饭采纳,获得10
14秒前
14秒前
小二郎应助tingting采纳,获得10
16秒前
19秒前
19秒前
善学以致用应助Millennial采纳,获得10
20秒前
22秒前
QL关闭了QL文献求助
22秒前
23秒前
时尚的靖完成签到 ,获得积分10
23秒前
喻安琪发布了新的文献求助10
24秒前
wczhang1999发布了新的文献求助10
24秒前
ding应助令狐擎宇采纳,获得10
24秒前
chaoswu发布了新的文献求助10
25秒前
iebix发布了新的文献求助20
25秒前
JamesPei应助天涯明月采纳,获得10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 800
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5029427
求助须知:如何正确求助?哪些是违规求助? 4264923
关于积分的说明 13296093
捐赠科研通 4073309
什么是DOI,文献DOI怎么找? 2227877
邀请新用户注册赠送积分活动 1236570
关于科研通互助平台的介绍 1160691