Intelligent Transmit Antenna Selection Schemes for High-Rate Fully Generalized Spatial Modulation

计算机科学 支持向量机 天线(收音机) 选择(遗传算法) 多输入多输出 误码率 调制(音乐) 人工智能 字错误率 机器学习 电信 频道(广播) 美学 哲学
作者
Hindavi Jadhav,Vinoth Babu Kumaravelu,Arthi Murugadass,Agbotiname Lucky Imoize,Poongundran Selvaprabhu,Arunkumar Chandrasekhar
出处
期刊:Future Internet [Multidisciplinary Digital Publishing Institute]
卷期号:15 (8): 281-281 被引量:1
标识
DOI:10.3390/fi15080281
摘要

The sixth-generation (6G) network is supposed to transmit significantly more data at much quicker rates than existing networks while meeting severe energy efficiency (EE) targets. The high-rate spatial modulation (SM) methods can be used to deal with these design metrics. SM uses transmit antenna selection (TAS) practices to improve the EE of the network. Although it is computationally intensive, free distance optimized TAS (FD-TAS) is the best for performing the average bit error rate (ABER). The present investigation aims to examine the effectiveness of various machine learning (ML)-assisted TAS practices, such as support vector machine (SVM), naïve Bayes (NB), K-nearest neighbor (KNN), and decision tree (DT), to the small-scale multiple-input multiple-output (MIMO)-based fully generalized spatial modulation (FGSM) system. To the best of our knowledge, there is no ML-based antenna selection schemes for high-rate FGSM. SVM-based TAS schemes achieve ∼71.1% classification accuracy, outperforming all other approaches. The ABER performance of each scheme is evaluated using a higher constellation order, along with various transmit antennas to achieve the target ABER of 10−5. By employing SVM for TAS, FGSM can achieve a minimal gain of ∼2.2 dB over FGSM without TAS (FGSM-NTAS). All TAS strategies based on ML perform better than FGSM-NTAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的绣连完成签到,获得积分10
刚刚
澹台灭明完成签到,获得积分10
1秒前
1秒前
1秒前
Erin关注了科研通微信公众号
2秒前
Yang发布了新的文献求助10
2秒前
12完成签到,获得积分10
2秒前
5秒前
5秒前
充电宝应助澹台灭明采纳,获得10
6秒前
齐嘉懿完成签到,获得积分10
6秒前
英姑应助Yang采纳,获得30
6秒前
xiaoming完成签到 ,获得积分10
7秒前
VDC应助失眠双双采纳,获得30
7秒前
7秒前
8秒前
9秒前
WangYanjie发布了新的文献求助10
9秒前
Bingbingbing发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
10086wm发布了新的文献求助10
11秒前
archaea发布了新的文献求助10
12秒前
xiyou发布了新的文献求助10
12秒前
傲娇谷秋完成签到,获得积分10
12秒前
田様应助YYDS采纳,获得10
12秒前
科研通AI5应助奋斗梦旋采纳,获得10
13秒前
Yang完成签到,获得积分10
13秒前
小马过河发布了新的文献求助10
13秒前
缓慢的绿草完成签到,获得积分10
13秒前
澹台灭明发布了新的文献求助10
13秒前
柠檬不吃酸完成签到,获得积分10
14秒前
14秒前
14秒前
完美出奇制胜完成签到,获得积分10
14秒前
15秒前
潇洒日记本完成签到,获得积分10
15秒前
16秒前
春雨完成签到,获得积分0
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793494
求助须知:如何正确求助?哪些是违规求助? 3338382
关于积分的说明 10289505
捐赠科研通 3054903
什么是DOI,文献DOI怎么找? 1676204
邀请新用户注册赠送积分活动 804239
科研通“疑难数据库(出版商)”最低求助积分说明 761789