Sparsity of higher-order landscape interactions enables learning and prediction for microbiomes

杠杆(统计) 计算机科学 微生物群 机器学习 工作流程 微生物种群生物学 功能(生物学) 鉴定(生物学) 群落结构 代表(政治) 数据挖掘 人工智能 数据科学 生态学 生物 生物信息学 遗传学 数据库 进化生物学 细菌 政治 政治学 法学
作者
Shreya Arya,Ashish B. George,James P. O’Dwyer
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (48) 被引量:13
标识
DOI:10.1073/pnas.2307313120
摘要

Microbiome engineering offers the potential to leverage microbial communities to improve outcomes in human health, agriculture, and climate. To translate this potential into reality, it is crucial to reliably predict community composition and function. But a brute force approach to cataloging community function is hindered by the combinatorial explosion in the number of ways we can combine microbial species. An alternative is to parameterize microbial community outcomes using simplified, mechanistic models, and then extrapolate these models beyond where we have sampled. But these approaches remain data-hungry, as well as requiring an a priori specification of what kinds of mechanisms are included and which are omitted. Here, we resolve both issues by introducing a mechanism-agnostic approach to predicting microbial community compositions and functions using limited data. The critical step is the identification of a sparse representation of the community landscape. We then leverage this sparsity to predict community compositions and functions, drawing from techniques in compressive sensing. We validate this approach on in silico community data, generated from a theoretical model. By sampling just 1% of all possible communities, we accurately predict community compositions out of sample. We then demonstrate the real-world application of our approach by applying it to four experimental datasets and showing that we can recover interpretable, accurate predictions on composition and community function from highly limited data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
annaanna完成签到 ,获得积分10
1秒前
1秒前
科研通AI6应助纯真乐儿采纳,获得10
1秒前
哈哈哈哈发布了新的文献求助10
2秒前
2秒前
小蘑菇应助不喜欢孜然采纳,获得30
2秒前
lyx完成签到,获得积分10
2秒前
Amy完成签到,获得积分10
2秒前
bayernxw发布了新的文献求助10
2秒前
大个应助yjy采纳,获得10
3秒前
大个应助朴素语风采纳,获得30
3秒前
哈哈哈完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI6应助小野123采纳,获得10
4秒前
4秒前
壮观沉鱼发布了新的文献求助10
5秒前
北凤完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
再不洗洗睡就来不及了完成签到,获得积分10
6秒前
赫灵竹完成签到,获得积分10
6秒前
Amy发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
科研通AI6应助落后台灯采纳,获得10
9秒前
lling发布了新的文献求助10
10秒前
11秒前
11秒前
丘比特应助nice123nico采纳,获得10
11秒前
marcg4发布了新的文献求助10
12秒前
ZHZ发布了新的文献求助10
12秒前
Ph发布了新的文献求助10
12秒前
南冥完成签到 ,获得积分0
12秒前
13秒前
科研通AI2S应助julia采纳,获得10
14秒前
5165asd完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481265
求助须知:如何正确求助?哪些是违规求助? 4582239
关于积分的说明 14384437
捐赠科研通 4510982
什么是DOI,文献DOI怎么找? 2472116
邀请新用户注册赠送积分活动 1458496
关于科研通互助平台的介绍 1432064