CSGAN: Modality-Aware Trajectory Generation via Clustering-based Sequence GAN

弹道 计算机科学 模态(人机交互) 聚类分析 模式 人工智能 生成语法 序列(生物学) 机器学习 生成模型 数据挖掘 社会科学 遗传学 生物 物理 社会学 天文
作者
Minxing Zhang,Haowen Lin,Shun Takagi,Yang Cao,Cyrus Shahabi,Li Xiong
标识
DOI:10.1109/mdm58254.2023.00032
摘要

Human mobility data is useful for various applications in urban planning, transportation, and public health, but collecting and sharing real-world trajectories can be challenging due to privacy and data quality issues. To address these problems, recent research focuses on generating synthetic trajectories, mainly using generative adversarial networks (GANs) trained by real-world trajectories. In this paper, we hypothesize that by explicitly capturing the modality of transportation (e.g., walking, biking, driving), we can generate not only more diverse and representative trajectories for different modalities but also more realistic trajectories that preserve the geographical density, trajectory, and transition level properties by capturing both cross-modality and modality-specific patterns. Towards this end, we propose a Clustering-based Sequence Generative Adversarial Network (CSGAN) that simultaneously clusters the trajectories based on their modalities and learns the essential properties of real-world trajectories to generate realistic and representative synthetic trajectories. To measure the effectiveness of generated trajectories, in addition to typical density and trajectory level statistics, we define several new metrics for a comprehensive evaluation, including modality distribution and transition probabilities both globally and within each modality. Our extensive experiments with real-world datasets show the superiority of our model in various metrics over state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没烦恼完成签到,获得积分10
刚刚
禾七发布了新的文献求助10
1秒前
1秒前
优雅的流沙完成签到 ,获得积分10
1秒前
雪霓裳发布了新的文献求助10
1秒前
槿曦完成签到 ,获得积分10
2秒前
2秒前
sgjj33应助冷艳从梦采纳,获得10
2秒前
2秒前
2秒前
zz发布了新的文献求助10
3秒前
欣欣完成签到,获得积分10
4秒前
4秒前
yuchao完成签到,获得积分10
4秒前
从容书瑶发布了新的文献求助10
5秒前
5秒前
5秒前
春生发布了新的文献求助10
5秒前
哆啦B梦发布了新的文献求助10
5秒前
ding应助l405465175采纳,获得10
6秒前
TCR完成签到,获得积分10
6秒前
幽芊细雨完成签到,获得积分10
7秒前
youyouyou由于求助违规,被管理员扣积分40
8秒前
HEIKU应助神秘人采纳,获得10
8秒前
舒适的亦瑶完成签到,获得积分10
9秒前
老实的小小完成签到,获得积分20
9秒前
9秒前
Lucas应助从容书瑶采纳,获得10
10秒前
1314小木木发布了新的文献求助10
10秒前
10秒前
欢呼流沙完成签到,获得积分20
10秒前
很酷的妞子完成签到 ,获得积分10
10秒前
Julo发布了新的文献求助10
10秒前
李珍德不丑完成签到,获得积分10
11秒前
lancekkk发布了新的文献求助30
12秒前
skysleeper完成签到,获得积分10
12秒前
一一发布了新的文献求助30
13秒前
datang完成签到,获得积分10
13秒前
哆啦B梦完成签到,获得积分10
13秒前
Yue完成签到 ,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792855
求助须知:如何正确求助?哪些是违规求助? 3337361
关于积分的说明 10284619
捐赠科研通 3054083
什么是DOI,文献DOI怎么找? 1675772
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761548