亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy

医学 无线电技术 列线图 放化疗 肿瘤科 内科学 宫颈癌 无进展生存期 癌症 放射科 总体生存率
作者
Qi Yan,Menghan Wu,Jing Zhang,Jiayang Yang,Guannan Lv,Baojun Qu,Yanping Zhang,Yan Xia,Jianbo Song
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1): 144-144 被引量:2
标识
DOI:10.1186/s40644-024-00789-2
摘要

Abstract Objective This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify high-risk patients and guide personalized treatment. Methods We performed a retrospective analysis of 188 patients from two centers, divided into training (132) and validation (56) sets. Clinical data, systemic inflammatory markers, and immune-nutritional indices were collected. Radiomic features from three MRI sequences were extracted and selected for predictive value. We developed and evaluated five models incorporating clinical features, nutritional-inflammatory indicators, and radiomics using C-index. The best-performing model was used to create a nomogram, which was validated through ROC curves, calibration plots, and decision curve analysis (DCA). Results Model 5, which integrates clinical features, Systemic Immune-Inflammation Index (SII), Prognostic Nutritional Index (PNI), and MRI radiomics, showed the highest performance. It achieved a C-index of 0.833 (95% CI: 0.792–0.874) in the training set and 0.789 (95% CI: 0.679–0.899) in the validation set. The nomogram derived from Model 5 effectively stratified patients into risk groups, with AUCs of 0.833, 0.941, and 0.973 for 1-year, 3-year, and 5-year PFS in the training set, and 0.812, 0.940, and 0.944 in the validation set. Conclusions The integrated model combining clinical features, nutritional-inflammatory biomarkers, and radiomics offers a robust tool for predicting PFS in CC patients undergoing CCRT. The nomogram provides precise predictions, supporting its application in personalized patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
细心盼晴发布了新的文献求助10
10秒前
张小明完成签到,获得积分10
23秒前
24秒前
hu发布了新的文献求助30
29秒前
hu完成签到,获得积分10
35秒前
39秒前
siqilinwillbephd完成签到,获得积分10
42秒前
香蕉觅云应助shinn采纳,获得10
42秒前
张小明发布了新的文献求助10
55秒前
56秒前
追寻友桃完成签到,获得积分10
57秒前
59秒前
1分钟前
追寻友桃发布了新的文献求助10
1分钟前
1分钟前
孙泉完成签到,获得积分10
1分钟前
bkagyin应助孙泉采纳,获得10
1分钟前
张小明关注了科研通微信公众号
1分钟前
科研通AI6.1应助夜夜景采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Rr发布了新的文献求助10
1分钟前
qqx发布了新的文献求助10
1分钟前
研友_VZG7GZ应助耕云钓月采纳,获得10
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
上官若男应助无心的怜南采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772479
求助须知:如何正确求助?哪些是违规求助? 5598976
关于积分的说明 15429712
捐赠科研通 4905414
什么是DOI,文献DOI怎么找? 2639398
邀请新用户注册赠送积分活动 1587319
关于科研通互助平台的介绍 1542182