Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario

学习迁移 分割 人工智能 计算机科学 机器学习 医学 自然语言处理 医学物理学
作者
Aidan Boyd,Zezhong Ye,Sanjay P. Prabhu,Michael C. Tjong,Yining Zha,Anna Zapaishchykova,Sridhar Vajapeyam,Paul J. Catalano,Hasaan Hayat,Rishi Chopra,Kevin X. Liu,Ali Nabavizadeh,Adam C Resnick,Sabine Mueller,Daphne A. Haas‐Kogan,Hugo J.W.L. Aerts,Tina Young Poussaint,Benjamin H. Kann
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:5
标识
DOI:10.1148/ryai.230254
摘要

Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 2015) from a national brain tumor consortium (n = 184; median age, 7 years [range, 1-23 years]; 94 male patients) and a pediatric cancer center (n = 100; median age, 8 years [range, 1-19 years]; 47 male patients) to develop and evaluate deep learning neural networks for pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72-0.91] vs 0.812 [IQR, 0.56-0.89] for baseline model; P = .049). With external testing, the AI model yielded excellent accuracy using reference standards from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75-0.90]; expert 2, 0.81 [IQR, 0.70-0.89]; expert 3, 0.81 [IQR, 0.68-0.88]; mean accuracy, 0.82). For clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score, 9 [IQR, 7-9] vs 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement with a high level of clinical acceptability. Keywords: Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmentation, Deep Learning Supplemental material is available for this article. © RSNA, 2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sun完成签到,获得积分10
刚刚
yuhuai发布了新的文献求助10
1秒前
Ava应助微笑采纳,获得10
2秒前
派小星发布了新的文献求助10
3秒前
英姑应助晨星采纳,获得10
4秒前
香蕉觅云应助饱满的妙梦采纳,获得10
4秒前
5秒前
6秒前
最短的咒完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
10秒前
10秒前
24给24的求助进行了留言
10秒前
11秒前
小平发布了新的文献求助10
12秒前
12秒前
清爽芾发布了新的文献求助10
12秒前
柔弱小之发布了新的文献求助10
13秒前
小晨晨发布了新的文献求助10
14秒前
Sun发布了新的文献求助10
15秒前
youxueting完成签到,获得积分10
15秒前
派小星完成签到,获得积分10
15秒前
学术通zzz发布了新的文献求助10
16秒前
十三应助xxyqddx采纳,获得10
17秒前
17秒前
17秒前
19秒前
sink发布了新的文献求助10
20秒前
21秒前
柔弱小之完成签到,获得积分20
21秒前
22秒前
JY发布了新的文献求助10
22秒前
23秒前
SciGPT应助白桃采纳,获得10
23秒前
搜集达人应助初余采纳,获得10
23秒前
Lxr发布了新的文献求助30
25秒前
有机僧发布了新的文献求助10
26秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814703
求助须知:如何正确求助?哪些是违规求助? 3358760
关于积分的说明 10397413
捐赠科研通 3076145
什么是DOI,文献DOI怎么找? 1689733
邀请新用户注册赠送积分活动 813195
科研通“疑难数据库(出版商)”最低求助积分说明 767532