Sequential binary classification of lithofacies from well-log data and their uncertainty quantification

二进制数 数学 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:12 (4): T573-T584 被引量:1
标识
DOI:10.1190/int-2024-0019.1
摘要

Abstract Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well-log interpretation are labor-intensive. As a result, many scientists are conducting research to use machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, an uncertainty analysis of machine-learning models is crucial to determine the reliability of the prediction results. Machine-learning algorithms that use ensemble methods provide an easy method for an uncertainty analysis but algorithms that do not use ensemble methods have difficulty in quantifying the level of uncertainty. In our research, we introduce a method known as sequential binary classification (SBC), which helps not only classify lithofacies but also to quantify and visualize the regions of uncertainty of the machine-learning models. SBC provides a method for using any classification algorithm of the user’s choice to construct an ensemble, which allows the user to quantify uncertainty readily. Our research uses the SBC algorithm to classify and quantify the uncertainty from the well-log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC helps to visualize these high uncertainties. We additionally demonstrate how SBC alleviates the class imbalance issue among the various lithofacies in the area, which is a very common problem in well-log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆发布了新的文献求助10
1秒前
shenshi发布了新的文献求助10
2秒前
怕黑行天关注了科研通微信公众号
3秒前
糖糖的冰镇啤酒完成签到 ,获得积分10
3秒前
阿语完成签到 ,获得积分10
4秒前
翻个花生完成签到,获得积分10
5秒前
鸡米花完成签到,获得积分10
6秒前
6秒前
yyy发布了新的文献求助20
8秒前
小马发布了新的文献求助10
9秒前
科研畅行发布了新的文献求助10
9秒前
11秒前
Zeee完成签到,获得积分10
12秒前
星辰大海应助顺利盼望采纳,获得10
12秒前
鸡米花发布了新的文献求助30
12秒前
lxj发布了新的文献求助10
13秒前
Capacition6完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
唐诗阅完成签到,获得积分10
16秒前
17秒前
gxc发布了新的文献求助20
18秒前
禹映安发布了新的文献求助10
18秒前
19秒前
华仔应助黄兆强采纳,获得10
21秒前
老福贵儿应助shenshi采纳,获得10
23秒前
23秒前
乐乐应助GuiChenli采纳,获得10
24秒前
王十贰完成签到,获得积分10
26秒前
光而不耀发布了新的文献求助10
26秒前
1122发布了新的文献求助10
27秒前
12341完成签到,获得积分10
29秒前
顺利盼望完成签到,获得积分20
29秒前
量子星尘发布了新的文献求助10
29秒前
31秒前
drughunter009完成签到 ,获得积分10
31秒前
雾影觅光完成签到,获得积分10
33秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851