已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multisite Atomic‐Oxygen Anchoring Strategy Affords Efficient and Stable Perovskite Solar Cells

锚固 材料科学 钙钛矿(结构) 氧气 纳米技术 化学工程 光电子学 有机化学 化学 结构工程 工程类
作者
Mingguang Li,Wenjing Pan,Lian Zhao,Wei Wan,Yong Deng,Ke Guo,Wenhan Yang,Longbing He,Runfeng Chen,Guangbao Wu
出处
期刊:Advanced Functional Materials [Wiley]
被引量:5
标识
DOI:10.1002/adfm.202413177
摘要

Abstract Lewis base molecules are widely used to passivate structural defects in perovskites. However, the spatial compatibility between these molecules and the perovskite lattice is seldom considered. Herein, a multisite atomic‐oxygen (O) anchoring passivation strategy using 1,1,2,2‐tetra(4‐methoxyphenyl)ethene (TMPE), which contains four electronegative O atoms to selectively anchor iodine vacancies and passivate under‐coordinated Pb 2+ or MA + defects is proposed. It is found that the distance between any three O atoms in a TMPE molecule matches that of iodine ions in the lattice structure, thereby maximizing passivation effects and enhancing lattice stability. Additionally, the coordination of TMPE facilitates the formation of larger colloid sizes in the precursor solution, effectively regulating crystal growth. Due to the molecular extrusion effect, TMPE‐based anchors localize on the surface, passivating defects and mitigating nonradiative recombination. As a result, defects in MA‐based and FA‐based perovskite films are significantly reduced, achieving optimized power conversion efficiencies (PCEs) of 19.9% and 24.5%, while exhibiting exceptional stability by retaining 90% of initial PCE after 1200 h of storage without encapsulation. This single molecule‐controlled perovskite multisite anchoring strategy would help resolve lattice stability issue caused by perovskite defects, thereby paving the pathway for the development of high‐performance and highly stable perovskite solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
斯文败类应助libangle采纳,获得10
8秒前
8秒前
10秒前
琴楼发布了新的文献求助10
11秒前
12秒前
xiaolei完成签到 ,获得积分10
13秒前
CipherSage应助天真的迎天采纳,获得10
13秒前
15秒前
脑洞疼应助童了个童采纳,获得10
15秒前
Jasper应助童了个童采纳,获得10
15秒前
星辰大海应助童了个童采纳,获得10
15秒前
传奇3应助童了个童采纳,获得10
15秒前
16秒前
搜集达人应助香蕉招牌采纳,获得30
16秒前
16秒前
17秒前
libangle发布了新的文献求助10
20秒前
昭奚发布了新的文献求助30
20秒前
21秒前
22秒前
Orange应助爱学习的叭叭采纳,获得30
22秒前
23秒前
26秒前
wbc_wbc发布了新的文献求助10
26秒前
27秒前
传奇3应助孙皮皮采纳,获得10
27秒前
28秒前
28秒前
刘睿伯发布了新的文献求助10
29秒前
昭奚完成签到,获得积分10
29秒前
乐观采文应助lzh采纳,获得10
31秒前
YEGE发布了新的文献求助10
32秒前
32秒前
32秒前
PPH发布了新的文献求助10
37秒前
dwtouxx完成签到,获得积分10
38秒前
40秒前
fahbfafajk完成签到,获得积分10
41秒前
Cristina2024完成签到,获得积分10
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4228468
求助须知:如何正确求助?哪些是违规求助? 3761944
关于积分的说明 11823311
捐赠科研通 3422349
什么是DOI,文献DOI怎么找? 1878120
邀请新用户注册赠送积分活动 931261
科研通“疑难数据库(出版商)”最低求助积分说明 839115