亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral Zones-Based SHAP/LIME: Enhancing Interpretability in Spectral Deep Learning Models Through Grouped Feature Analysis

化学 可解释性 特征(语言学) 光谱分析 石灰 人工智能 模式识别(心理学) 光谱学 地质学 古生物学 哲学 语言学 物理 量子力学 计算机科学
作者
Jhonatan Contreras,Andreea Winterfeld,Jürgen Popp,Thomas Bocklitz
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (39): 15588-15597 被引量:27
标识
DOI:10.1021/acs.analchem.4c02329
摘要

Interpretability is just as important as accuracy when it comes to complex models, especially in the context of deep learning models. Explainable artificial intelligence (XAI) approaches have been developed to address this problem. The literature on XAI for spectroscopy mainly emphasizes independent feature analysis with limited application of zone analysis. Individual feature analysis methods, such as shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), have limitations due to their dependence on perturbations. These methods measure how AI models respond to sudden changes in the individual feature values. While they can help identify the most impactful features, the abrupt shifts introduced by replacing these values with zero or the expected ones may not accurately represent real-world scenarios. This can lead to mathematical and computational interpretations that are neither physically realistic nor intuitive to humans. Our proposed method does not rely on individual disturbances. Instead, it targets "spectral zones" to directly estimate the effect of group disturbances on a trained model. Consequently, factors such as sample size, hyperparameter selection, and other training-related considerations are not the primary focus of the XAI methods. To achieve this, we have developed a modified version of LIME and SHAP capable of performing group perturbations, enhancing explainability and realism while minimizing noise in the plots used for interpretability. Additionally, we employed an efficient approach to calculate spectral zones for complex spectra with indistinct spectral boundaries. Users can also define the zones themselves using their domain-specific knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cherry发布了新的文献求助30
5秒前
曦耀发布了新的文献求助10
6秒前
14秒前
辉辉应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
二舅司机发布了新的文献求助10
18秒前
二舅司机完成签到,获得积分10
22秒前
Cherry发布了新的文献求助10
30秒前
39秒前
Cherry发布了新的文献求助10
47秒前
LM完成签到,获得积分10
1分钟前
汉堡包应助Epiphany采纳,获得10
1分钟前
桦奕兮完成签到 ,获得积分10
1分钟前
CWY发布了新的文献求助50
1分钟前
彭于晏应助wdsgkfjhn采纳,获得10
1分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
终归完成签到 ,获得积分10
2分钟前
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
辉辉应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Epiphany发布了新的文献求助10
2分钟前
13633501455完成签到 ,获得积分10
2分钟前
2分钟前
犬来八荒发布了新的文献求助10
2分钟前
2分钟前
Epiphany完成签到,获得积分10
2分钟前
2分钟前
上官若男应助温婉的凝雁采纳,获得10
3分钟前
Alvin完成签到 ,获得积分10
3分钟前
温婉的凝雁完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
王玉发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091