Research on the identification of DCT vehicle driver’s starting intention based on LSTM neural network and multi-sensor data fusion

计算机科学 动力传动系统 离散余弦变换 人工神经网络 鉴定(生物学) 过程(计算) 人工智能 模式识别(心理学) 传感器融合 聚类分析 数据挖掘 图像(数学) 扭矩 生物 热力学 操作系统 植物 物理
作者
Zeyu Xu,Haijiang Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:237 (12): 2928-2941
标识
DOI:10.1177/09544070221115292
摘要

Currently, the objective evaluation of the DCT vehicle drivability requires the accurate identification of the driver’s intention and vehicle state as well as the selection of the targeted evaluation indicators. The existing identification methods usually cannot divide the driver’s intentions in detail and make full use of the characteristics of time-series signals. Simultaneously, external kinematic sensors are more commonly used than the sensors of vehicle powertrain, which impacts the recognition effect. This paper proposes a new method for identifying the DCT vehicle driver’s starting intentions based on an LSTM neural network and multi-sensor data fusion. The DCT vehicle driver’s starting intentions are subdivided and defined based on human–vehicle interaction analysis and K-means clustering. The input of the model consists of 11-dimensional variables that include motion parameters of the vehicle collected by the external sensors and the powertrain parameters collected by onboard sensors. The method proposed in this paper first establishes a recognition window, which is utilized to extract the starting process samples from the DCT vehicle driving data. Second, the 11 variables of each sample are used as one set of multi-dimensional time-series signals, which are preprocessed through wavelet denoising. Finally, the LSTM network is used to identify the samples. The identification results indicate that the highest recognition accuracy of the proposed algorithm is 94.27%, which is approximately 5% higher than conventional methods, such as fully connected neural networks and support vector machines. Furthermore, the model with 11 input variables outperforms the model with fewer input variables. The effectiveness and superiority of the identification model have been demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助Francis采纳,获得10
1秒前
bb发布了新的文献求助10
1秒前
小王同学完成签到,获得积分10
2秒前
大海很蓝发布了新的文献求助10
3秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
9秒前
10秒前
10秒前
11秒前
烟花应助小元同学采纳,获得10
11秒前
huahua发布了新的文献求助10
12秒前
12秒前
日升月发布了新的文献求助10
13秒前
14秒前
11完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
16秒前
爱弥儿发布了新的文献求助10
16秒前
bkagyin应助ceeray23采纳,获得20
17秒前
look完成签到,获得积分10
17秒前
cbrown发布了新的文献求助10
18秒前
超越针针完成签到 ,获得积分10
18秒前
张宏宇发布了新的文献求助10
18秒前
19秒前
linkr5发布了新的文献求助10
19秒前
虚心的唯雪完成签到,获得积分10
20秒前
月下发布了新的文献求助10
20秒前
潘潘发布了新的文献求助10
21秒前
落叶应助koko爱吃鳗鱼饭采纳,获得10
21秒前
21秒前
木叶研发布了新的文献求助10
21秒前
23秒前
clocksoar完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787074
求助须知:如何正确求助?哪些是违规求助? 3332663
关于积分的说明 10257066
捐赠科研通 3048037
什么是DOI,文献DOI怎么找? 1672947
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271