亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LCZ method is more effective than traditional LUCC method in interpreting the relationship between urban landscape and atmospheric particles

微粒 环境科学 土地利用 土地覆盖 自然地理学 地理 大气科学 生态学 地质学 生物
作者
Ruiyuan Jiang,Changkun Xie,Zihao Man,Afshin Afshari,Shengquan Che
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:869: 161677-161677 被引量:20
标识
DOI:10.1016/j.scitotenv.2023.161677
摘要

Landscape classification methods significantly impact the exploration of the mechanism of the relationship between landscapes and atmospheric particulate matter. This study compared the local climate zones (LCZs) and traditional land use/cover change (LUCC) landscape classification methods in explaining spatial differences in concentrations of atmospheric particulate matter (PM2.5 and PM10) and explored the mechanisms involved in how landscape elements affect atmospheric particulate matter. This was done by establishing a PM2.5 and PM10 land use regression (LUR) model of LCZ and LUCC landscapes under low, typical, and high particle concentration gradients in urban and suburban areas. The results show that under an LCZ classification system, the number of patches in the urban area of Shanghai was 548 times higher than that of a LUCC system. Moreover, LCZs were successfully established for LUR models in 12 scenarios, while only five models were established for LUCC, all of which were suburban models. The R2 of the LUR model based on the LCZ landscape and atmospheric particulate matter was mostly higher than that of the LUCC. For unnatural landscapes, the LUCC demonstrated that an urbanized environment positively affects the concentration of atmospheric particles. However, the LCZ analysis found that areas with high-density buildings have a positive effect on atmospheric particles, while most areas with low-density buildings significantly reduced the number of atmospheric particles present. Generally, compared with the traditional LUCC landscape classification method, LCZ integrates Shanghai's physical structure and classifies the urban landscape more accurately, which is closely related to the urban atmospheric particulate matter, especially in the urban area. Because the low-density building area has the same effect on the particulate matter as the natural landscape, the use of low-density buildings is recommended when planning new towns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学废了的阿C完成签到 ,获得积分10
2秒前
大模型应助小路采纳,获得10
14秒前
24秒前
小路发布了新的文献求助10
30秒前
SFYIII发布了新的文献求助10
38秒前
SFYIII完成签到,获得积分10
59秒前
1分钟前
嘻嘻嘻嘻发布了新的文献求助10
1分钟前
liam发布了新的文献求助30
2分钟前
嘻嘻嘻嘻完成签到,获得积分10
2分钟前
2分钟前
liam发布了新的文献求助30
2分钟前
科研通AI5应助liam采纳,获得30
3分钟前
我是老大应助专注的草丛采纳,获得10
3分钟前
3分钟前
木头完成签到,获得积分10
4分钟前
4分钟前
4分钟前
liam发布了新的文献求助30
4分钟前
liam发布了新的文献求助30
5分钟前
5分钟前
TXX发布了新的文献求助10
5分钟前
binyao2024完成签到,获得积分10
5分钟前
可爱的函函应助任性大米采纳,获得10
5分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
kw98完成签到 ,获得积分10
5分钟前
5分钟前
Lancet完成签到,获得积分10
6分钟前
Orange应助liam采纳,获得30
6分钟前
Lancet发布了新的文献求助10
6分钟前
6分钟前
李末完成签到 ,获得积分10
7分钟前
小贾爱喝冰美式完成签到 ,获得积分10
7分钟前
liuguang完成签到,获得积分10
7分钟前
7分钟前
quzhenzxxx完成签到 ,获得积分10
7分钟前
liam发布了新的文献求助30
8分钟前
mashibeo完成签到,获得积分10
8分钟前
Krim完成签到 ,获得积分10
8分钟前
AAA1798完成签到,获得积分20
9分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840808
求助须知:如何正确求助?哪些是违规求助? 3382714
关于积分的说明 10526350
捐赠科研通 3102563
什么是DOI,文献DOI怎么找? 1708902
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773584