EPformer: an efficient transformer-based approach for retail product detection in fisheye images

计算机科学 人工智能 计算机视觉 卷积神经网络 变压器 特征提取 目标检测 模式识别(心理学) 工程类 电气工程 电压
作者
Yunfei Yang,Hongwei Deng
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (01) 被引量:2
标识
DOI:10.1117/1.jei.32.1.013017
摘要

Retail product detection in fisheye camera capture scenes frequently suffers from excessive object occlusion and deformation, as well as difficulty in distinguishing products with small fine-grained differences, so accurately classifying and localizing products in these images presents a challenge for computer vision. We propose an efficient product detection network called EPformer by fusing a visual transformer and convolutional neural network to reliably detect retail products in fisheye images. We employ a shifted window strategy for feature information interaction across windows to more precisely detect products due to the issue of dense occlusion of products. To address the issue of excessive product deformation brought on by fisheye cameras, we develop a deformation image processing module without explicit correction and embed it into the path aggregation network structure. This enables the model to efficiently capture product geometric changes and conduct feature fusion. To address the issue of differentiating fine-grained products, we design an effective coordinate squeeze-excitation (ECSE) attention module that can capture the fine-grained texture and boundary information differences between individuals in terms of spatial and channel relationships. The inability to differentiate fine-grained products can be solved by training the ECSE module in tandem with the decoupled head. The experimental results demonstrate that EPformer is a potent product detection model with a 4.9% higher mean average precision than the state-of-the-art method (YOLOX) on the fisheye product image dataset. In addition, the EPformer model can effectively detect products in fisheye images on the Jeston Xavier NX embedded device to meet the application requirements in realistic scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经蛋挞完成签到,获得积分10
刚刚
Megumi发布了新的文献求助10
2秒前
勤恳的不二完成签到,获得积分10
2秒前
3秒前
Cui发布了新的文献求助10
3秒前
鱼雁发布了新的文献求助10
3秒前
5秒前
5秒前
科研通AI5应助猪猪hero采纳,获得10
5秒前
香蕉觅云应助Cui采纳,获得10
7秒前
chen7777完成签到,获得积分20
8秒前
8秒前
8秒前
ZZZZZ发布了新的文献求助10
8秒前
小材发布了新的文献求助10
9秒前
科研通AI5应助安和桥采纳,获得10
9秒前
尧思瑶发布了新的文献求助10
9秒前
10秒前
chen7777发布了新的文献求助10
11秒前
果果瑞宁发布了新的文献求助10
11秒前
坚定妙旋完成签到,获得积分10
12秒前
12秒前
大个应助深情的嫣然采纳,获得10
14秒前
Artra_Soong发布了新的文献求助10
14秒前
ppxx完成签到,获得积分10
15秒前
猪猪hero发布了新的文献求助10
17秒前
tl完成签到,获得积分10
17秒前
Fjj完成签到,获得积分10
19秒前
丘比特应助zhao采纳,获得10
20秒前
ding应助yum采纳,获得30
20秒前
22秒前
23秒前
佟彦成关注了科研通微信公众号
24秒前
JF123_完成签到 ,获得积分10
25秒前
Fischl完成签到 ,获得积分10
26秒前
星辰大海应助Survivor采纳,获得10
26秒前
真的是猫发布了新的文献求助10
26秒前
雪白的问兰完成签到,获得积分20
27秒前
果果瑞宁完成签到,获得积分10
27秒前
whyzz发布了新的文献求助20
28秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
成人寻常型银屑病医患共决策-海峡两岸及港澳地区专家共识 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829470
求助须知:如何正确求助?哪些是违规求助? 3372049
关于积分的说明 10470651
捐赠科研通 3091653
什么是DOI,文献DOI怎么找? 1701284
邀请新用户注册赠送积分活动 818342
科研通“疑难数据库(出版商)”最低求助积分说明 770835