An explainable artificial intelligence system for diagnosing Helicobacter Pylori infection under endoscopy: a case–control study

幽门螺杆菌 医学 内窥镜检查 幽门螺杆菌感染 螺杆菌 胃肠病学 内科学 病理
作者
Qian Zhang,Jie Pan,Jiejun Lin,Ming Xu,Lihui Zhang,Renduo Shang,Liwen Yao,Yanxia Li,Wei Zhou,Yunchao Deng,Zehua Dong,Yijie Zhu,Tao Xiao,Lianlian Wu,Honggang Yu
出处
期刊:Therapeutic Advances in Gastroenterology [SAGE Publishing]
卷期号:16: 175628482311550-175628482311550 被引量:4
标识
DOI:10.1177/17562848231155023
摘要

Background: Changes in gastric mucosa caused by Helicobacter pylori ( H. pylori) infection affect the observation of early gastric cancer under endoscopy. Although previous researches reported that computer-aided diagnosis (CAD) systems have great potential in the diagnosis of H. pylori infection, their explainability remains a challenge. Objective: We aim to develop an explainable artificial intelligence system for diagnosing H. pylori infection (EADHI) and giving diagnostic basis under endoscopy. Design: A case–control study. Methods: We retrospectively obtained 47,239 images from 1826 patients between 1 June 2020 and 31 July 2021 at Renmin Hospital of Wuhan University for the development of EADHI. EADHI was developed based on feature extraction combining ResNet-50 and long short-term memory networks. Nine endoscopic features were used for H. pylori infection. EADHI’s performance was evaluated and compared to that of endoscopists. An external test was conducted in Wenzhou Central Hospital to evaluate its robustness. A gradient-boosting decision tree model was used to examine the contributions of different mucosal features for diagnosing H. pylori infection. Results: The system extracted mucosal features for diagnosing H. pylori infection with an overall accuracy of 78.3% [95% confidence interval (CI): 76.2–80.3]. The accuracy of EADHI for diagnosing H. pylori infection (91.1%, 95% CI: 85.7–94.6) was significantly higher than that of endoscopists (by 15.5%, 95% CI: 9.7–21.3) in internal test. And it showed a good accuracy of 91.9% (95% CI: 85.6–95.7) in external test. Mucosal edema was the most important diagnostic feature for H. pylori positive, while regular arrangement of collecting venules was the most important H. pylori negative feature. Conclusion: The EADHI discerns H. pylori gastritis with high accuracy and good explainability, which may improve the trust and acceptability of endoscopists on CADs. Plain language summary An explainable AI system for Helicobacter pylori with good diagnostic performance Helicobacter pylori ( H. pylori) is the main risk factor for gastric cancer (GC), and changes in gastric mucosa caused by H. pylori infection affect the observation of early GC under endoscopy. Therefore, it is necessary to identify H. pylori infection under endoscopy. Although previous research showed that computer-aided diagnosis (CAD) systems have great potential in H. pylori infection diagnosis, their generalization and explainability are still a challenge. Herein, we constructed an explainable artificial intelligence system for diagnosing H. pylori infection (EADHI) using images by case. In this study, we integrated ResNet-50 and long short-term memory (LSTM) networks into the system. Among them, ResNet50 is used for feature extraction, LSTM is used to classify H. pylori infection status based on these features. Furthermore, we added the information of mucosal features in each case when training the system so that EADHI could identify and output which mucosal features are contained in a case. In our study, EADHI achieved good diagnostic performance with an accuracy of 91.1% [95% confidence interval (CI): 85.7–94.6], which was significantly higher than that of endoscopists (by 15.5%, 95% CI: 9.7–21.3%) in internal test. In addition, it showed a good diagnostic accuracy of 91.9% (95% CI: 85.6–95.7) in external tests. The EADHI discerns H. pylori gastritis with high accuracy and good explainability, which may improve the trust and acceptability of endoscopists on CADs. However, we only used data from a single center to develop EADHI, and it was not effective in identifying past H. pylori infection. Future, multicenter, prospective studies are needed to demonstrate the clinical applicability of CADs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美丽觅夏完成签到 ,获得积分10
2秒前
LB发布了新的文献求助10
3秒前
研友_VZG7GZ应助haha采纳,获得10
5秒前
6秒前
9秒前
9秒前
星子完成签到,获得积分10
10秒前
Wangchenghan完成签到,获得积分20
10秒前
一一完成签到,获得积分10
10秒前
Wangchenghan发布了新的文献求助10
12秒前
13秒前
杨zhen发布了新的文献求助10
13秒前
milk完成签到 ,获得积分10
16秒前
大模型应助yue采纳,获得10
17秒前
LLL完成签到 ,获得积分10
17秒前
可爱的函函应助LB采纳,获得10
18秒前
慕青应助Wangchenghan采纳,获得10
18秒前
黑米粥发布了新的文献求助10
23秒前
YZMING完成签到,获得积分10
24秒前
传奇3应助wubin69采纳,获得200
27秒前
TTT完成签到,获得积分10
31秒前
旺旺仙貝完成签到 ,获得积分10
33秒前
LB完成签到,获得积分10
37秒前
希望天下0贩的0应助一北采纳,获得10
42秒前
47秒前
49秒前
科研通AI5应助wubin69采纳,获得200
50秒前
烟花应助CYY采纳,获得10
52秒前
pluto完成签到,获得积分10
53秒前
53秒前
RR发布了新的文献求助10
53秒前
科研通AI5应助Nia采纳,获得30
54秒前
一北发布了新的文献求助10
54秒前
JamesPei应助iwhsgfes采纳,获得10
55秒前
55秒前
尔尔完成签到 ,获得积分10
56秒前
温婉的香水完成签到 ,获得积分10
58秒前
林xi完成签到 ,获得积分10
58秒前
木言发布了新的文献求助10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325733
关于积分的说明 10224062
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669043
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649