Review of optical detection technologies for inner-wall surface defects

灵活性(工程) 计算机科学 曲面(拓扑) 人工智能 材料科学 纳米技术 数学 统计 几何学
作者
Lei Liu,Zhang Hong-shun,Fanwei Jiao,Linlin Zhu,Xiaodong Zhang
出处
期刊:Optics and Laser Technology [Elsevier BV]
卷期号:162: 109313-109313 被引量:6
标识
DOI:10.1016/j.optlastec.2023.109313
摘要

Inner-wall structures are common, and as their carrier, inner-wall-shaped parts are widely used in various fields of industry and scientific research. The inner-wall structure is usually used to transport substances such as fluid and gas, or to interact mechanically with cylindrical structures. No matter what kind of use, there is no doubt that the defects on inner-wall surfaces will directly affect their application performance, so it is necessary to detect the defects of the manufactured inner-wall-shaped parts to ensure their surface quality. The defect detection technologies based on optical principles have the obvious advantages of non-destructive, high efficiency and flexibility, and have no strict requirements on materials, so it is a popular inner-wall detection way. Because of the particularity of inner-wall structures, after obtaining the inner-wall surface information with high signal-noise ratio through the traditional qualitative detection technologies or three-dimensional quantitative detection technologies, it is necessary to design corresponding algorithms to identify and extract defects. With the development of machine learning research, defect recognition algorithms are not limited to the traditional algorithms based on defect feature design logic judgment, but also derive a new idea to identify the existence and types of defects based on machine learning training model. The accuracy of defect recognition is effectively improved. This paper analyzes and summarizes the current mainstream technologies of defect recognition based on optical principles, and summarizes the principles, key technical points and research status of various methods. According to the development characteristics of the demand for inner-wall-shaped parts, it is inferred that the development trend of inner-wall defect detection is mainly around the three directions of making the detection system on-line, quantitative and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
田田完成签到 ,获得积分10
3秒前
简易发布了新的文献求助10
4秒前
瑞雪不是雪完成签到,获得积分20
5秒前
充电宝应助六七九采纳,获得10
6秒前
凤里完成签到 ,获得积分10
6秒前
9秒前
今后应助拼搏荧采纳,获得20
10秒前
11秒前
11秒前
温暖寻雪完成签到,获得积分10
11秒前
九月完成签到,获得积分10
12秒前
重要尔曼完成签到,获得积分20
12秒前
12秒前
Ava应助long采纳,获得10
13秒前
13秒前
飞龙在天完成签到,获得积分0
14秒前
温暖寻雪发布了新的文献求助10
14秒前
薯条完成签到,获得积分10
15秒前
18秒前
18秒前
hehehe完成签到,获得积分10
18秒前
19秒前
20秒前
hugo发布了新的文献求助10
20秒前
xuening发布了新的文献求助10
23秒前
科研小白发布了新的文献求助10
24秒前
27秒前
六七九发布了新的文献求助10
27秒前
无花果应助zengyangyu采纳,获得30
27秒前
magicfu完成签到,获得积分10
29秒前
29秒前
Owen应助稻草人采纳,获得10
30秒前
hm发布了新的文献求助20
30秒前
个性凡儿完成签到,获得积分10
30秒前
hugo完成签到,获得积分10
30秒前
深情安青应助Qqian采纳,获得10
31秒前
重要钥匙发布了新的文献求助10
31秒前
31秒前
科研小白完成签到,获得积分20
31秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Modeling Survival Data: Extending the Cox Model 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826255
求助须知:如何正确求助?哪些是违规求助? 3368692
关于积分的说明 10451867
捐赠科研通 3088099
什么是DOI,文献DOI怎么找? 1698959
邀请新用户注册赠送积分活动 817222
科研通“疑难数据库(出版商)”最低求助积分说明 770100