Graphene supported double-layer carbon encapsulated silicon for high-performance lithium-ion battery anode materials

石墨烯 材料科学 阳极 化学工程 碳纤维 氧化物 锂(药物) 锂离子电池 纳米技术 电极 电池(电) 复合材料 复合数 光电子学 化学 冶金 医学 功率(物理) 物理 物理化学 量子力学 内分泌学 工程类
作者
Yanhong Lu,Zhantong Ye,Yating Zhao,Qing Li,Meiyu He,Congcong Bai,Xiaotong Wang,Yalu Han,Xingchen Wan,Suling Zhang,Yanfeng Ma,Yongsheng Chen
出处
期刊:Carbon [Elsevier BV]
卷期号:201: 962-971 被引量:77
标识
DOI:10.1016/j.carbon.2022.10.010
摘要

Carbon coating has been an effective procedure to tackle the severe structural degradation and poor conductivity during cycling of silicon-based anodes in lithium-ion batteries (LIBs). However, the traditional coated carbon usually is tight and thus limit the fast-charging rate and high specific capacity. Herein, through in-situ formation of metal-organic frameworks on the surface, silicon particles were firstly coated by an inside carbon layer. Followed by a solvothermal reaction with the mixture of sucrose and graphene oxide, the second carbon layer outside the silicon particles was deposited, and simultaneously a highly conductive graphene network was formed. After a high temperature pyrolysis process, a graphene matrix supported silicon material with inward multi-channel carbon and outward tight activated carbon was prepared. This unique core/double-layer carbon structure, combined with the highly conductive graphene frameworks, render the material to demonstrate excellent electrochemical performance as anode materials for LIBs in terms of both lithium storage capacity and cycling stability. Thus, the electrode materials deliver a high specific capacity of 1528.1 mA h g−1 at the current density of 0.1 A g−1 and rate capacity retention of 45.5% at 1 A g−1 to 0.1 A g−1. Simultaneously, a highly stable reversible capacity of 1182 mAh g−1 with 89.5% retention over 240 cycles at a current density of 0.2 A g−1 and 484 mAh g−1 with 76.8% retention after 450 cycles at 1.0 A g−1 were obtained. This work can offer an alternative approach for high-energy and low-cost silicon-based anodes for LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
uraylong发布了新的文献求助10
2秒前
huisu发布了新的文献求助10
2秒前
来自星星的me完成签到,获得积分10
5秒前
5秒前
zsz发布了新的文献求助10
6秒前
板凳发布了新的文献求助30
8秒前
科研通AI5应助云泥采纳,获得10
10秒前
12秒前
852应助板凳采纳,获得30
15秒前
橙子完成签到 ,获得积分20
15秒前
zsz完成签到,获得积分10
17秒前
赘婿应助荔枝采纳,获得10
17秒前
lu完成签到 ,获得积分10
20秒前
24秒前
huisu完成签到,获得积分10
24秒前
26秒前
27秒前
所所应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
星辰大海应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得20
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
28秒前
充电宝应助加快步伐采纳,获得10
29秒前
动漫大师发布了新的文献求助20
29秒前
pcr163应助迷路中的骑手采纳,获得30
30秒前
32秒前
32秒前
33秒前
36秒前
墨月白发布了新的文献求助30
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098