A multiple imputation approach in enhancing causal inference for overall survival in randomized controlled trials with crossover

因果推理 推论 插补(统计学) 渡线 随机对照试验 交叉研究 统计 计量经济学 数学 医学 计算机科学 内科学 人工智能 缺少数据 替代医学 病理 安慰剂
作者
R. P. Zhao,Junjing Lin,Jing Xu,Guohui Liu,Bingxia Wang,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Taylor & Francis]
卷期号:: 1-18
标识
DOI:10.1080/10543406.2024.2434500
摘要

Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ah爱科研完成签到,获得积分10
1秒前
脑洞疼应助小雪采纳,获得10
2秒前
英俊的铭应助robalance采纳,获得10
3秒前
美好斓发布了新的文献求助10
4秒前
企鹅完成签到,获得积分10
4秒前
leyu完成签到,获得积分10
7秒前
烟花应助大番茄采纳,获得10
9秒前
robalance给robalance的求助进行了留言
12秒前
13秒前
你估下我叫乜嘢名完成签到 ,获得积分10
13秒前
烟花应助科研强采纳,获得10
14秒前
16秒前
18秒前
cmd发布了新的文献求助10
20秒前
ycwfs发布了新的文献求助10
21秒前
沐风发布了新的文献求助10
22秒前
dennisysz发布了新的文献求助10
22秒前
23秒前
嘟嘟嘟嘟完成签到 ,获得积分10
24秒前
27秒前
Ryan发布了新的文献求助10
28秒前
小李老博应助科研通管家采纳,获得10
28秒前
上官若男应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
Ankher应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
小李老博应助科研通管家采纳,获得10
29秒前
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
chd发布了新的文献求助10
32秒前
上官若男应助cmd采纳,获得10
32秒前
33秒前
谭先生发布了新的文献求助50
36秒前
小屁孩完成签到,获得积分10
37秒前
37秒前
HAHA完成签到,获得积分10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103