Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: a systematic review

背景(考古学) 计算机科学 人工智能 机器学习 降维 代谢组学 数据科学 标准化 线性判别分析 生化工程 生物信息学 工程类 生物 古生物学 操作系统
作者
Salman Taheri,Jelmir Craveiro de Andrade,Carlos Adam Conte‐Júnior
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:: 1-27
标识
DOI:10.1080/10408398.2024.2435597
摘要

This review systematically explores the emerging perspectives on analytical techniques and machine learning applications in food metabolomics, with a focus on their roles in the era of Industry 4.0. The study emphasizes the utilization of chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy as primary tools for metabolic profiling, highlighting their respective strengths and limitations. LC-MS, known for its high sensitivity and specificity, faces challenges such as complex data interpretation and the need for advanced computational tools.1H NMR offers reproducibility and quantitative accuracy but struggles with lower sensitivity compared to mass spectrometry. The review also delves into the integration of multivariate data analysis techniques like principal component analysis and partial least squares-discriminant analysis, which enhance data dimensionality reduction and pattern recognition, yet require careful validation to avoid overfitting. Furthermore, the application of machine learning algorithms, including random forests and support vector machines, is discussed in the context of improving classification and predictive tasks in food metabolomics. Practical applications of these technologies are demonstrated in areas such as quality control, nutritional studies, and food adulteration detection. The review emphasizes the need for standardization in methodologies and the development of more accessible and cost-effective analytical workflows. Future research directions include enhancing the sensitivity of 1H NMR, integrating metabolomics with other omics technologies, and fostering data sharing to build comprehensive reference libraries. This review aims to provide a comprehensive and critical overview of the current advancements and future potentials of analytical techniques and machine learning in food metabolomics, aligning with the goals of Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄代荷完成签到 ,获得积分10
4秒前
5秒前
BCKT完成签到,获得积分10
5秒前
活力的语堂完成签到 ,获得积分10
14秒前
lynn完成签到 ,获得积分10
17秒前
Tonald Yang完成签到 ,获得积分20
18秒前
20秒前
ok123完成签到 ,获得积分10
23秒前
大轩完成签到 ,获得积分10
23秒前
云岫完成签到 ,获得积分10
24秒前
珍珠火龙果完成签到 ,获得积分10
25秒前
zzh完成签到 ,获得积分10
31秒前
34秒前
无辜凝天完成签到,获得积分10
38秒前
玄之又玄完成签到,获得积分10
39秒前
健脊护柱完成签到 ,获得积分10
40秒前
42秒前
pengchen完成签到 ,获得积分10
44秒前
董阳发布了新的文献求助10
46秒前
47秒前
benyu完成签到,获得积分10
49秒前
NiNi完成签到,获得积分20
59秒前
勤奋的灯完成签到 ,获得积分10
59秒前
九花青完成签到,获得积分10
59秒前
LIKUN完成签到,获得积分10
1分钟前
1分钟前
陈JY完成签到 ,获得积分10
1分钟前
CodeCraft应助zky采纳,获得10
1分钟前
不舍天真完成签到,获得积分10
1分钟前
无花果应助小作坊钳工采纳,获得10
1分钟前
时代更迭完成签到 ,获得积分10
1分钟前
无趣养乐多完成签到 ,获得积分10
1分钟前
藜藜藜在乎你完成签到 ,获得积分10
1分钟前
Layace完成签到 ,获得积分10
1分钟前
xinran_lv完成签到,获得积分10
1分钟前
1分钟前
闾丘剑封完成签到 ,获得积分10
1分钟前
Sofia完成签到 ,获得积分0
1分钟前
鲁滨逊完成签到 ,获得积分10
1分钟前
xiaoliu完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495301
关于积分的说明 11076179
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783324
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839