Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: a systematic review

背景(考古学) 计算机科学 人工智能 机器学习 降维 代谢组学 数据科学 标准化 线性判别分析 生化工程 生物信息学 工程类 生物 古生物学 操作系统
作者
Salman Taheri,Jelmir Craveiro de Andrade,Carlos Adam Conte‐Júnior
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:: 1-27
标识
DOI:10.1080/10408398.2024.2435597
摘要

This review systematically explores the emerging perspectives on analytical techniques and machine learning applications in food metabolomics, with a focus on their roles in the era of Industry 4.0. The study emphasizes the utilization of chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy as primary tools for metabolic profiling, highlighting their respective strengths and limitations. LC-MS, known for its high sensitivity and specificity, faces challenges such as complex data interpretation and the need for advanced computational tools.1H NMR offers reproducibility and quantitative accuracy but struggles with lower sensitivity compared to mass spectrometry. The review also delves into the integration of multivariate data analysis techniques like principal component analysis and partial least squares-discriminant analysis, which enhance data dimensionality reduction and pattern recognition, yet require careful validation to avoid overfitting. Furthermore, the application of machine learning algorithms, including random forests and support vector machines, is discussed in the context of improving classification and predictive tasks in food metabolomics. Practical applications of these technologies are demonstrated in areas such as quality control, nutritional studies, and food adulteration detection. The review emphasizes the need for standardization in methodologies and the development of more accessible and cost-effective analytical workflows. Future research directions include enhancing the sensitivity of 1H NMR, integrating metabolomics with other omics technologies, and fostering data sharing to build comprehensive reference libraries. This review aims to provide a comprehensive and critical overview of the current advancements and future potentials of analytical techniques and machine learning in food metabolomics, aligning with the goals of Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TangYuan完成签到,获得积分20
刚刚
hk完成签到,获得积分10
1秒前
2秒前
情怀应助小元采纳,获得10
5秒前
暴走火箭筒完成签到,获得积分10
5秒前
明理的青寒完成签到 ,获得积分10
5秒前
Punch发布了新的文献求助10
6秒前
Anatee完成签到,获得积分10
6秒前
soar完成签到,获得积分10
8秒前
9秒前
kkk完成签到,获得积分10
10秒前
小二郎应助高大的秋白采纳,获得10
10秒前
科研迪完成签到,获得积分10
13秒前
14秒前
泥過完成签到 ,获得积分10
14秒前
15秒前
Aixia发布了新的文献求助10
17秒前
英俊的铭应助忧心的寄松采纳,获得10
19秒前
世间安得双全法完成签到,获得积分0
22秒前
23秒前
23秒前
27秒前
小元发布了新的文献求助10
27秒前
Punch完成签到,获得积分10
27秒前
Unicorn发布了新的文献求助10
27秒前
32秒前
33秒前
33秒前
小奋青完成签到 ,获得积分10
34秒前
34秒前
852应助joleisalau采纳,获得10
35秒前
LGJ完成签到,获得积分10
37秒前
深情安青应助lizhiqian2024采纳,获得10
37秒前
FashionBoy应助科研通管家采纳,获得10
39秒前
39秒前
桐桐应助科研通管家采纳,获得10
39秒前
joker_k应助科研通管家采纳,获得20
39秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
40秒前
情怀应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777986
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215128
捐赠科研通 3038833
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339