A Novel Prognostic Risk Model Based on Oxidative Stress to Predict Survival and Improve Treatment Strategies in Stomach Adenocarcinoma

列线图 比例危险模型 单变量 生存分析 队列 Lasso(编程语言) 内科学 肿瘤科 生物 生物信息学 医学 计算机科学 多元统计 机器学习 万维网
作者
Nuo Yao,Kexin Lin,Xiaodong Qu,Xue-Zhi Li,Xingyu Zhao,Songbo Li,Jie Zhang,Yongquan Shi
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:28
标识
DOI:10.2174/0113862073353612241030061241
摘要

Background: Stomach adenocarcinoma (STAD) is the fifth most common tumor worldwide, imposing a significant disease burden on populations, particularly in Asia. Oxidative stress is well-known to play an essential role in the occurrence and progression of malignancies. Our study aimed to construct a prediction model by exploring the correlation between oxidative stress-related genes and the prognosis of patients with STAD. Method: STAD data from TCGA were used to identify the differentially expressed oxidative stress-related genes (OSGs), with data from GEO serving as the validation cohort. Univariate Cox and LASSO regression analyses were performed to select prognosis-related genes for the risk model, which was then integrated with clinical features into a nomogram. The physiological functions and pathways of these identified genes were explored using GO and KEGG analyses. After evaluating the prediction value of the prognostic model in the GEO cohort, drug sensitivity and immune infiltration were comprehensively analyzed using R. Expression levels of the prognostic genes were verified by quantitative real-time PCR in gastric cancer and paired normal tissues. Results: Cox regression and LASSO regression analysis identified SERPINE1, VHL, CD36, NOS3, ANXA5, ADCYAP1, POLRMT and GPX3 as the signature genes from 160 differentially expressed OSGs. Both Kaplan–Meier survival analysis and ROC curve at 5 years in the TCGA and the GEO cohort exhibited great predictive ability of the prognostic model, with the AUC >0.7 in TCGA. Validated as an independent risk factor, the model was integrated with clinicopathological variables (including age, stage, and gender) to build a nomogram for more accurate risk stratification. Moreover, therapy sensitivity analysis between the low- and high-risk categories showed that those who scored higher would benefit more from BEZ235, Dasatinib, Pazopanib, and Saracatinib. Meanwhile, differences in the tumor environment, immune infiltration and response to immunotherapy between the two groups were noted. Finally, qRT-PCR validated the differential expression of these genes in STAD and paired normal tissues. Conclusion: Our study has effectively established an oxidative stress-related prognostic model, providing a promising tool for personalized clinical strategies and improved STAD patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
沉静皮带完成签到 ,获得积分10
3秒前
yjf发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
曾sir完成签到,获得积分10
5秒前
EIN10发布了新的文献求助10
6秒前
叶世玉发布了新的文献求助10
8秒前
菠萝完成签到 ,获得积分10
9秒前
4归0发布了新的文献求助10
9秒前
CWNU_HAN应助科研通管家采纳,获得30
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
CWNU_HAN应助科研通管家采纳,获得30
10秒前
田様应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
CWNU_HAN应助科研通管家采纳,获得30
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得20
10秒前
高兴可乐完成签到,获得积分10
11秒前
cadcae发布了新的文献求助200
12秒前
14秒前
EIN10完成签到,获得积分20
14秒前
秋婷发布了新的文献求助10
15秒前
胡新语发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
煲煲煲仔饭应助来碗豆腐采纳,获得10
20秒前
花怜完成签到,获得积分20
21秒前
wtg发布了新的文献求助10
21秒前
乐观小之应助超级盼海采纳,获得10
22秒前
杨枝甘露发布了新的文献求助10
22秒前
maox1aoxin应助欣慰枕头采纳,获得30
23秒前
23秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Capitalism and Its Critics: A History: From the Industrial Revolution to AI 200
The Triumph of Economic Freedom: Debunking the Seven Myths of American Capitalism 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832915
求助须知:如何正确求助?哪些是违规求助? 3375336
关于积分的说明 10488703
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819814
科研通“疑难数据库(出版商)”最低求助积分说明 771661