Elaborate Designed Three‐Dimensional Hierarchical Conductive MOF/LDH/CF Nanoarchitectures for Superior Capacitive Deionization

电容去离子 材料科学 纳米技术 导电体 电容感应 计算机科学 化学 电化学 电极 复合材料 操作系统 物理化学
作者
Chang He,Jun Zhang,Dionissios Mantzavinos,Alexandros Katsaounis,Duan‐Hui Si,Yan Zhang,Hongyu Zhang,Zhuwu Jiang
出处
期刊:Angewandte Chemie [Wiley]
被引量:7
标识
DOI:10.1002/anie.202420295
摘要

Rational exploration of cost‐effective, durable, and high‐performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal‐organic frameworks (c‐MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M‐CAT/LDH/CF) as CDI anodes via a controllable grafted‐growth strategy is reported. In this assembly, carbon fiber (CF) provides exceptional electrical conductivity facilitating rapid ion transfer and acts as a sturdy foundation for even distribution of NiCoCu‐LDH nanosheets. Moreover, the well‐ordered NiCoCu‐LDH further acts as interior templates to create an interface by embedding c‐MOFs and aligning two crystal lattice systems, facilitating the graft growth of c‐MOFs/LDH heterostructures along the LDH nanosheet arrays on CF, leading to accelerated ion diffusion kinetics. Density functional theory (DFT) confirms enhanced interfacial charge transfer between NiCoCu‐LDH and M‐CAT, leading to improved ion transfer and smoother Cl‐ shuttle. Accordingly, the asymmetrical M‐CAT/LDH/CF cell exhibits superior specific capacitance, salt adsorption capacity, rapid rate, and cyclic stability. This work offers valuable insights for designing heterostructure electrode materials based on three‐dimensional interconnected networks, contributing to further advancements in CDI technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
王森完成签到,获得积分20
3秒前
orixero应助工藤新一采纳,获得10
5秒前
易安发布了新的文献求助10
6秒前
6秒前
7秒前
Ferris完成签到,获得积分10
8秒前
科研通AI2S应助jimmy采纳,获得10
8秒前
pure123完成签到,获得积分10
8秒前
9秒前
11秒前
求一篇pdf关注了科研通微信公众号
11秒前
13秒前
皮蛋发布了新的文献求助10
16秒前
16秒前
Somnolence咩发布了新的文献求助30
18秒前
19秒前
20秒前
闾丘惜寒应助萤火虫88采纳,获得10
21秒前
Esfuerzo完成签到,获得积分10
22秒前
ZCL完成签到,获得积分20
22秒前
22秒前
23秒前
wys发布了新的文献求助10
23秒前
24秒前
荼白完成签到 ,获得积分10
24秒前
24秒前
屯屯鱼完成签到,获得积分10
26秒前
26秒前
Linly发布了新的文献求助10
26秒前
屯屯鱼发布了新的文献求助10
29秒前
852应助niko采纳,获得10
30秒前
30秒前
工藤新一发布了新的文献求助10
30秒前
彪壮的刺猬完成签到,获得积分10
31秒前
baoyin_hexige应助朴实如冰采纳,获得10
32秒前
32秒前
33秒前
领导范儿应助IM小红旗采纳,获得10
33秒前
半夏桃夭完成签到,获得积分10
33秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103513
求助须知:如何正确求助?哪些是违规求助? 3641221
关于积分的说明 11538535
捐赠科研通 3349869
什么是DOI,文献DOI怎么找? 1840540
邀请新用户注册赠送积分活动 907555
科研通“疑难数据库(出版商)”最低求助积分说明 824725