Effects of Incorporating a Large Language Model-Based Adaptive Mechanism Into Contextual Games on Students’ Academic Performance, Flow Experience, Cognitive Load and Behavioral Patterns

机制(生物学) 认知 计算机科学 认知负荷 流量(数学) 认知心理学 心理学 人机交互 数学教育 哲学 几何学 数学 认识论 神经科学
作者
Minkai Wang,Di Zhang,Jingdong Zhu,Hanjie Gu
出处
期刊:Journal of Educational Computing Research [SAGE Publishing]
标识
DOI:10.1177/07356331251321719
摘要

Scientific knowledge is often abstract and challenging, making it difficult for students to apply these concepts effectively. Digital game-based learning (DGBL) offers an engaging and immersive approach, but the fixed resources and predetermined learning paths in most games limit its ability to adapt to individual learners’ needs. Large language models, as advanced conversational agents, are capable of personalized interaction by adapting to users' language styles, interests, and preferences. This study explores a large language model-based adaptive contextual game (LLM-ACG) approach aimed at transforming scientific education into engaging, interactive, and supportive learning environments. Additionally, this research examines the impacts of the LLM-ACG approach on academic performance, flow experiences, cognitive load, and behavioral patterns among students. A quasi-experimental design was employed to compare the differences in academic achievements and flow experiences between the LLM-ACG approach and the conventional contextual game (C-CG) approach among fifth-grade students. Furthermore, an in-depth analysis of student behavioral patterns during gameplay was conducted through lagged sequence analysis. The findings indicate that the LLM-ACG approach demonstrates a clear advantage over C-CG in terms of enhancing students' academic achievements and flow experiences. It effectively reduces cognitive load and significantly promotes positive learning behaviors and sustained motivation among students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
asdadadad发布了新的文献求助10
1秒前
1秒前
pxn发布了新的文献求助10
2秒前
义气芾发布了新的文献求助10
5秒前
caicainuegou发布了新的文献求助10
6秒前
7秒前
赘婿应助程程采纳,获得10
7秒前
优秀含双发布了新的文献求助10
7秒前
羽心发布了新的文献求助10
8秒前
asdadadad完成签到,获得积分10
10秒前
11秒前
pxn完成签到,获得积分10
12秒前
chennapx发布了新的文献求助10
12秒前
13秒前
13秒前
Hello应助fanfan要努力采纳,获得30
17秒前
Harry发布了新的文献求助10
18秒前
李爱国应助caicainuegou采纳,获得10
18秒前
yearluren完成签到,获得积分10
19秒前
阿迪完成签到,获得积分10
19秒前
Lyue发布了新的文献求助10
19秒前
dodo发布了新的文献求助20
23秒前
余晖霞光完成签到 ,获得积分10
23秒前
23秒前
23秒前
26秒前
26秒前
26秒前
金皮卡完成签到,获得积分10
26秒前
26秒前
无情的君浩应助黎明采纳,获得20
27秒前
SeiunSky完成签到,获得积分10
28秒前
GG波波发布了新的文献求助10
28秒前
贺剑身发布了新的文献求助10
29秒前
奇异物质完成签到,获得积分20
30秒前
程程发布了新的文献求助10
30秒前
阿迪发布了新的文献求助10
30秒前
朱先生发布了新的文献求助10
30秒前
李发行发布了新的文献求助30
32秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Governing Marine Living Resources in the Polar Regions 200
Bazaar to piazza. Islamic trade and Italian art, 1300–1600 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824484
求助须知:如何正确求助?哪些是违规求助? 3366814
关于积分的说明 10442670
捐赠科研通 3086123
什么是DOI,文献DOI怎么找? 1697727
邀请新用户注册赠送积分活动 816458
科研通“疑难数据库(出版商)”最低求助积分说明 769707