TransformDDI: The Transformer-Based Joint Multi-Task Model for End-to-End Drug-Drug Interaction Extraction

端到端原则 计算机科学 药品 变压器 药物与药物的相互作用 任务(项目管理) 人工智能 医学 工程类 药理学 电气工程 系统工程 电压
作者
Dimitrios Zaikis,Ioannis Vlahavas
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3507738
摘要

Drug-Drug Interactions (DDI) identification is a part of the drug safety process, that focuses at avoiding potential adverse drug effects that can lead to patient health risks. With the exponential growth in published literature, it becomes increasingly difficult to extract useful information from the most relevant research. Therefore, Machine Learning and specifically Relationship Extraction has been employed for the extraction of DDIs from biomedical literature. This task consists of both Named Entity Recognition and Relationship Classification techniques tackled in either pipelined or joint approaches for recognizing drug mentions and classifying their interactions, respectively. However, current approaches are prone to error propagation between the tasks, not taking the relevance between them into account. In this paper we propose TransformDDI, an end-to-end Transformer-based joint multi-task DDI extraction model that integrates domain knowledge and a shared parameter layer in a dynamic drug entities extraction and interaction classification Language Model architecture. Our proposed model can generate variable outputs based on the recognized drug entities in a single-model architecture by implementing a Dynamic Pair Attention Mechanism with task-specific focus and dynamic loss functions. Experiments conducted on the DDI Extraction 2013 benchmark corpus indicate that our methodology offers significant improvements over the current state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
蹦蹦发布了新的文献求助10
1秒前
Distance发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助acholar采纳,获得10
3秒前
畅快的汉堡完成签到,获得积分10
3秒前
hanhan发布了新的文献求助10
3秒前
隐形曼青应助激昂的背包采纳,获得10
4秒前
5秒前
6秒前
纯洁之心完成签到,获得积分20
6秒前
6秒前
望TIAN发布了新的文献求助10
6秒前
科研通AI5应助biubiubiu采纳,获得10
7秒前
贝壳发布了新的文献求助10
7秒前
蔓越莓完成签到 ,获得积分10
8秒前
8秒前
8秒前
机智毛豆发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
TT发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
ZYC007完成签到,获得积分10
14秒前
简单松鼠发布了新的文献求助10
14秒前
Lucas应助HHHH采纳,获得10
15秒前
专注不凡发布了新的文献求助30
16秒前
kailiuwang完成签到,获得积分10
16秒前
天空发布了新的文献求助10
16秒前
妙奇发布了新的文献求助10
17秒前
17秒前
17秒前
qhhz完成签到,获得积分20
17秒前
科研通AI5应助123采纳,获得10
19秒前
19秒前
科研通AI5应助zero1122采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791995
求助须知:如何正确求助?哪些是违规求助? 3336257
关于积分的说明 10279907
捐赠科研通 3052896
什么是DOI,文献DOI怎么找? 1675420
邀请新用户注册赠送积分活动 803413
科研通“疑难数据库(出版商)”最低求助积分说明 761330