A Semantic Conditional Diffusion Model for Enhanced Personal Privacy Preservation in Medical Images

计算机科学 信息隐私 个人可识别信息 人工智能 情报检索 互联网隐私 计算机安全
作者
Shudong Wang,Zhiyuan Zhao,Yawu Zhao,Luqi Wang,Yuanyuan Zhang,Jiehuan Wang,Sibo Qiao,Zhihan Lyu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3511583
摘要

Deep learning has significantly advanced medical image processing, yet the inherent inclusion of personally identifiable information (PII) within medical images-such as facial features, distinctive anatomical structures, rare lesions, or specific textural patterns-poses a critical risk to patient privacy during data transmission. To mitigate this risk, we introduce the Medical Semantic Diffusion Model (MSDM), a novel framework designed to synthesize medical images guided by semantic information, synthesis images with the same distribution as the original data, which effectively removes the PPI of the original data to ensure robust privacy protection. Unlike conventional techniques that combine semantic and noisy images for denoising, MSDM integrates Adaptive Batch Normalization (AdaBN) to encode semantic information into high-dimensional latent space, embedding it directly within the denoising neural network. This approach enhances image quality and semantic accuracy while ensuring that the synthetic and original images belong to the same distribution. In addition, to further accelerate synthesis and reduce dependency on manually crafted semantic masks, we propose the Spread Algorithm, which automatically generates these masks. Extensive experiments conducted on the BraTS 2021, MSD Lung, DSB18, and FIVES datasets confirm the efficacy of MSDM, yielding state-of-the-art results across several performance metrics. Augmenting datasets with MSDM-generated images in nnUNet segmentation experiments led to Dice scores of 0.6243, 0.9531, 0.9406, and 0.9562 underscoring its potential for enhancing both image quality and privacy-preserving data augmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助zxj采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
yufanhui应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
yufanhui应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
yufanhui应助科研通管家采纳,获得10
2秒前
CAOHOU应助宿醉采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
lzq完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
qll应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
大个应助冷艳的纸鹤采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4018427
求助须知:如何正确求助?哪些是违规求助? 3558619
关于积分的说明 11328851
捐赠科研通 3291415
什么是DOI,文献DOI怎么找? 1813209
邀请新用户注册赠送积分活动 888587
科研通“疑难数据库(出版商)”最低求助积分说明 812536