清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Auxiliary input-enhanced siamese neural network: A robust tool wear prediction framework with improved feature extraction and generalization ability

一般化 刀具磨损 人工神经网络 模式识别(心理学) 特征提取 机械加工 特征(语言学) 集合(抽象数据类型) 刀具 人工智能 卷积神经网络 一致性(知识库) 计算机科学 灵敏度(控制系统) 信号(编程语言) 工程类 数学 机械工程 电子工程 程序设计语言 哲学 数学分析 语言学
作者
Chenghan Wang,Bin Shen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:211: 111243-111243 被引量:6
标识
DOI:10.1016/j.ymssp.2024.111243
摘要

Tool wear monitoring is essential for automated and resilient manufacturing, as it can prevent catastrophic failures caused by severe wear on cutting edges during machining. The conventional tool wear monitoring approaches depend on features extracted from signals, which require sensitive signals and consistent tool wear. In practical scenarios, however, neither the sensitivity of collected signals to the tool wear status nor the consistency of the actual tool wear evolution is hard to meet the requirement of the tool condition monitoring algorithm, which greatly limit the wide spread of its industrial applications. To overcome this challenge, we propose an Auxiliary Input-enhanced Siamese Neural Network (AISNN) framework by incorporating a Siamese structure into the feature extraction part of a convolutional neural network (CNN), and introducing an auxiliary input to its nonlinear regression part. The Siamese structure, instead of extracting features directly from signals, distinguishes the difference between the features extracted from signals of the examined cut and the first cut, and uses this difference as the indicator of tool wear status. Moreover, the auxiliary input provides an additional feature that has heavy dependence on the tool wear, which enables the model learning the general wear evolution of the examined cutting tool. The effectiveness of the proposed AISNN framework is verified in a set of milling experiments where input signal is insensitive to the flank wear of cutting tool and different tools' wear evolution exhibits obvious inconsistency. Compared to the traditional CNN, the proposed AISNN significantly improves the accuracy on the verification set from 63% to 95% and on the testing set from 50% to 81%. The results demonstrate that the AISNN framework achieves significant improvement in feature extraction and generalization ability. The proposed AISNN, as a universal framework, can empower most existing deep learning-based tool wear prediction methods, enhancing their robustness in handling insensitive signals and inconsistent wear evolution and thereby promoting more industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
爱静静发布了新的文献求助10
34秒前
风里有声音完成签到 ,获得积分10
47秒前
研友_VZG7GZ应助虚心的尔云采纳,获得10
58秒前
小二郎应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
默默无闻完成签到,获得积分10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
科研通AI5应助可靠的寒风采纳,获得10
1分钟前
2分钟前
qq完成签到 ,获得积分10
2分钟前
2分钟前
SCI的芷蝶完成签到 ,获得积分10
2分钟前
科研通AI5应助可靠的寒风采纳,获得10
2分钟前
孤独剑完成签到 ,获得积分10
2分钟前
克姑美完成签到 ,获得积分10
2分钟前
铖訾发布了新的文献求助10
3分钟前
bkagyin应助铖訾采纳,获得10
3分钟前
慕青应助woods采纳,获得10
4分钟前
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
woods发布了新的文献求助10
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
小强完成签到 ,获得积分10
4分钟前
故意的冰淇淋完成签到 ,获得积分10
4分钟前
muriel完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
AAA1798发布了新的文献求助10
5分钟前
科研佟完成签到 ,获得积分10
5分钟前
lilaccalla完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
SciGPT应助livialiu采纳,获得10
5分钟前
顾矜应助可靠的寒风采纳,获得10
6分钟前
风华正茂完成签到,获得积分20
6分钟前
英喆完成签到 ,获得积分10
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847806
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561646
捐赠科研通 3110862
什么是DOI,文献DOI怎么找? 1714585
邀请新用户注册赠送积分活动 825289
科研通“疑难数据库(出版商)”最低求助积分说明 775467