已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Integrated Clinical and Computerized Tomography-Based Radiomic Feature Model to Separate Benign from Malignant Pleural Effusion

医学 接收机工作特性 无线电技术 逻辑回归 判别式 恶性胸腔积液 人工智能 放射科 回顾性队列研究 特征选择 随机森林 胸腔积液 决策树 机器学习 曲线下面积 癌胚抗原 特征(语言学) 支持向量机 诊断准确性 Lasso(编程语言) 降维 肺癌 医学诊断 模式识别(心理学) 渗出 医学影像学 鉴别诊断 试验预测值
作者
Fangqi Cai,Liwei Cheng,Xiaoling Liao,Yuping Xie,Wu Wang,Haofeng Zhang,Jinhua Lu,Ru Chen,Chunxia Chen,Xing Zhou,Xiaoyun Mo,Guoping Hu,Luying Huang
出处
期刊:Respiration [S. Karger AG]
卷期号:103 (7): 406-416 被引量:3
标识
DOI:10.1159/000536517
摘要

<b><i>Introduction:</i></b> Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. <b><i>Methods:</i></b> A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: <i>n</i> = 220; test cohort: <i>n</i> = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). <b><i>Results:</i></b> Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. <b><i>Conclusion:</i></b> This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
坦率完成签到,获得积分10
2秒前
3秒前
3秒前
xiaohan,JIA完成签到,获得积分10
4秒前
麻辣香锅发布了新的文献求助10
5秒前
搞怪的豪发布了新的文献求助50
5秒前
qq完成签到 ,获得积分10
6秒前
摩羯发布了新的文献求助20
7秒前
上官若男应助微光熠采纳,获得10
8秒前
Bailey发布了新的文献求助10
9秒前
10秒前
Jemma发布了新的文献求助10
10秒前
哑舍完成签到,获得积分10
12秒前
14秒前
长情无心完成签到,获得积分10
15秒前
蒋灵馨完成签到 ,获得积分10
15秒前
是阿瑾呀完成签到 ,获得积分10
15秒前
16秒前
17秒前
季刘杰完成签到 ,获得积分10
18秒前
学习发布了新的文献求助10
19秒前
Live应助LAN采纳,获得10
19秒前
傲娇的凛发布了新的文献求助10
20秒前
高高的镜子完成签到,获得积分10
23秒前
炙热的桐完成签到,获得积分10
24秒前
28秒前
WILD完成签到 ,获得积分10
31秒前
小俊完成签到,获得积分10
31秒前
刘兆亮发布了新的文献求助10
33秒前
34秒前
小鱼完成签到 ,获得积分20
36秒前
领导范儿应助An采纳,获得30
36秒前
肥鲸鱼发布了新的文献求助10
36秒前
可爱的函函应助学习采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
39秒前
慕青应助科研通管家采纳,获得10
39秒前
脑洞疼应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102