Machine learning combined with molecular simulations to screen α-amylase inhibitors as compounds that regulate blood sugar

淀粉酶 化学 对接(动物) 生物化学 医学 护理部
作者
Bo-Hao Liu,Bing Zhang,Ling Li,Kun-long Wang,Ying‐Hua Zhang,Jie Zhou,Baorong Wang
出处
期刊:Process Biochemistry [Elsevier BV]
卷期号:136: 169-181 被引量:4
标识
DOI:10.1016/j.procbio.2023.11.026
摘要

Diabetes, a metabolic disease characterized by hyperglycemia, seriously endangers the health and the lives of people. α-Amylase inhibitors have become effective substances to control blood glucose, and attracted extensive attention. In this study, a database of α-amylase inhibitors derived from naturally active small molecules in food was created and a quantitative structure-activity relationship model was developed by combining three machine learning methods (SVM, RF, and LDA) with four descriptors (MOE, ChemoPy, Mordred, and Rdkit). Hydrogen bond and hydrophobic interaction in the inhibition of α-amylase activity was confirmed by molecular docking. Enzyme inhibition experiments showed that the predicted compound had α-amylase inhibitory activity. Nevadensin was identified as a promising candidate of α-amylase inhibitors. The stability of α-amylase binding reaction was verified by molecular dynamics simulation. Optimal process conditions for the extraction of nevadensin from L. pauciflorus maxim were derived from single-factor experiments and response surface modeling. A promising method for digging natural α-amylase inhibitors was developed and the mode between inhibitors and α-amylase was explained in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaomili发布了新的文献求助10
刚刚
Akim应助123采纳,获得10
1秒前
2秒前
xiaomili发布了新的文献求助10
2秒前
xiaomili发布了新的文献求助10
2秒前
执着乐双发布了新的文献求助30
4秒前
4秒前
5秒前
扎心发布了新的文献求助10
7秒前
Akim应助开心的若烟采纳,获得10
7秒前
汉堡包应助阳光绝山采纳,获得10
8秒前
19854173750发布了新的文献求助10
9秒前
夏夏周发布了新的文献求助10
9秒前
10秒前
ALIVE_STAR完成签到,获得积分10
12秒前
口腔飞飞完成签到 ,获得积分10
15秒前
打打应助小龙采纳,获得10
15秒前
大模型应助19854173750采纳,获得10
16秒前
要减肥的访旋关注了科研通微信公众号
17秒前
迅速的八宝粥完成签到 ,获得积分10
17秒前
看文献了完成签到,获得积分10
17秒前
18秒前
18秒前
贾克斯完成签到,获得积分20
18秒前
大橘发布了新的文献求助10
21秒前
RiRi发布了新的文献求助10
21秒前
贾克斯发布了新的文献求助10
22秒前
虚影发布了新的文献求助100
23秒前
孙振亚发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
酷波er应助张张采纳,获得10
26秒前
友好的小翠完成签到,获得积分20
27秒前
wickedzz完成签到,获得积分10
29秒前
王三歲发布了新的文献求助10
29秒前
烟花应助大橘采纳,获得10
31秒前
32秒前
无花果应助贾克斯采纳,获得10
33秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780200
求助须知:如何正确求助?哪些是违规求助? 3325511
关于积分的说明 10223282
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798897
科研通“疑难数据库(出版商)”最低求助积分说明 758634