Breath analysis system with convolutional neural network (CNN) for early detection of lung cancer

气体分析呼吸 肺癌 卷积神经网络 多层感知器 癌症 人工智能 计算机科学 医学 人工神经网络 内科学 解剖
作者
Byeongju Lee,Junyeong Lee,Jin-Oh Lee,Yoohwa Hwang,Hyung-Keun Bahn,Inkyu Park,Sanghoon Jheon,Dae-Sik Lee
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:409: 135578-135578 被引量:58
标识
DOI:10.1016/j.snb.2024.135578
摘要

Early diagnosis of lung cancer, the leading cause of cancer-related death worldwide, is critical for reducing mortality rate. However, current diagnostic methods are invasive, time-consuming, costly, and may not always provide accurate diagnoses. For early diagnosis, recent research has focused on noninvasive approaches, including the detection of volatile organic compounds (VOCs) in human exhaled breath. Changes in the composition and concentration of VOCs in exhaled breath may indicate lung cancer, and this approach offers several advantages over traditional diagnostic methods. Moreover, the combination of a breath gas sensing system and machine learning algorithms provides a more accurate diagnosis. In this study, for the early diagnosis of lung cancer, a breath analysis system was developed using a gas sensor array and deep learning algorithm. The breath analysis system was designed to detect multiple VOCs in exhaled breath using ten semiconductor metal oxide (SMO), one photoionization detector (PID), nine electrochemical (EC) gas sensors. In total, 181 clinical breath samples (from 74 healthy controls and 107 lung cancer patients) were collected and analyzed using a 1D convolutional neural network (CNN) algorithm. The results showed an overall accuracy of 97.8% in classifying healthy controls and lung cancer patients using a complete clinical dataset. Through a comparison of the single-sensor type data and multimodal sensor data and performance analysis of three different deep learning models (multilayer perceptron, recurrent neural network, and CNN), we validated the potential of the breath analyzer with a multimodal sensor system and a 1D CNN as a lung cancer diagnostic device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都哥完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
乐乐应助fhg采纳,获得10
1秒前
小树发布了新的文献求助10
1秒前
bobo完成签到,获得积分10
2秒前
3秒前
我要毕业发布了新的文献求助10
4秒前
4秒前
awenger完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
biubiubiu发布了新的文献求助10
7秒前
开心黄蜂发布了新的文献求助10
8秒前
嘤鸣发布了新的文献求助10
8秒前
整齐听南完成签到 ,获得积分10
8秒前
菜菜果冻发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
xxl发布了新的文献求助10
10秒前
10秒前
12秒前
我爱小juju发布了新的文献求助10
12秒前
俏皮凌蝶发布了新的文献求助10
12秒前
彭于晏应助nuanfengf采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
ZYQ发布了新的文献求助10
14秒前
田様应助菜菜果冻采纳,获得10
15秒前
JUSTDOIT发布了新的文献求助10
16秒前
548发布了新的文献求助10
16秒前
16秒前
16秒前
我要毕业完成签到,获得积分10
16秒前
qian完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851