已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remote sensing image classification using an ensemble framework without multiple classifiers

像素 集合(抽象数据类型) 多光谱图像 计算机科学 人工智能 高光谱成像 模式识别(心理学) 集成学习 上下文图像分类 图像(数学) 训练集 数据挖掘 机器学习 程序设计语言
作者
Peng Dou,Chunlin Huang,Weixiao Han,Jinliang Hou,Ying Zhang,Juan Gu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 190-209 被引量:20
标识
DOI:10.1016/j.isprsjprs.2023.12.012
摘要

Recently, ensemble multiple deep learning (DL) classifiers has been reported to be an effective method for improving remote sensing classification accuracy. Although these approaches still follow the conventional pattern of inputting instance features and outputting corresponding classes, they often overlook the intrinsic relationships between pixels beyond their spatial features. As a result, the diversity in the ensemble classification results primarily relies on different DL models. However, training the DL models consumes a significant amount of time, and training multiple networks not only incurs additional time costs but also affects the overall efficiency. To address this, a new approach has been proposed in this paper, which takes advantage of the relationships between pixels and their combinations to generate diverse classification results. It's a novel ensemble classification framework, termed as the Doublet-Based Ensemble Classification Framework (DBECF), which eliminates the need for multiple classifiers. The DBECF starts by utilizing the training set to combine different samples to generate doublets. Then, features are assigned to these doublets through an exponentiation operation, resulting in a doublet training set. Using both the original training set and the derived doublet datasets, the DBECF is trained. For each input pixel, the DBECF produces multiple classification results, which are then integrated to obtain a more accurate output. To validate the proposed approach, experiments were conducted on three datasets, including multispectral images, hyperspectral images, and time series images. The maximum accuracies achieved by DBECF on the three datasets are 87.80 %, 97.71 %, and 83.51 %, respectively. In comparison to the contrastive methods, the incremental improvements in accuracy are 3.73 %, 7.66 %, and 9.16 %, respectively. The experimental results indicate that no matter using DL or non-deep learning for training, our proposed framework achieves progress on accuracy improvement outperforming classifications using comparative approach that based on single instance. This research provides a new perspective on the combination of DL and ensemble learning, highlighting its important implications and practical value in enhancing classification accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenjzhuc应助科研通管家采纳,获得10
1秒前
爱静静应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
爱静静应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
轻松的悟空完成签到 ,获得积分10
3秒前
feng_yihan完成签到 ,获得积分10
4秒前
5秒前
大男发布了新的文献求助30
6秒前
7秒前
独特的兰发布了新的文献求助10
10秒前
吴wish发布了新的文献求助10
10秒前
John完成签到 ,获得积分10
11秒前
傢誠发布了新的文献求助10
12秒前
77完成签到 ,获得积分10
12秒前
独特的兰完成签到,获得积分10
16秒前
ZZZ完成签到 ,获得积分10
16秒前
17秒前
21秒前
22秒前
小昔应助木子采纳,获得20
22秒前
24秒前
大个应助Alicexpp采纳,获得10
27秒前
栩栩发布了新的文献求助10
28秒前
整齐凝竹完成签到 ,获得积分10
33秒前
甜辣小泡芙完成签到,获得积分10
34秒前
38秒前
Owen应助落寞的半仙采纳,获得10
39秒前
wangwangwang完成签到,获得积分10
41秒前
rmbsLHC发布了新的文献求助10
42秒前
43秒前
44秒前
45秒前
zfm完成签到,获得积分10
46秒前
48秒前
49秒前
芒果仙子发布了新的文献求助10
49秒前
长夜Zzz发布了新的文献求助10
50秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811453
求助须知:如何正确求助?哪些是违规求助? 3355813
关于积分的说明 10377733
捐赠科研通 3072630
什么是DOI,文献DOI怎么找? 1687672
邀请新用户注册赠送积分活动 811742
科研通“疑难数据库(出版商)”最低求助积分说明 766798