亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote sensing image classification using an ensemble framework without multiple classifiers

像素 集合(抽象数据类型) 多光谱图像 计算机科学 人工智能 高光谱成像 模式识别(心理学) 集成学习 上下文图像分类 图像(数学) 训练集 数据挖掘 机器学习 程序设计语言
作者
Peng Dou,Chunlin Huang,Weixiao Han,Jinliang Hou,Ying Zhang,Juan Gu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 190-209 被引量:24
标识
DOI:10.1016/j.isprsjprs.2023.12.012
摘要

Recently, ensemble multiple deep learning (DL) classifiers has been reported to be an effective method for improving remote sensing classification accuracy. Although these approaches still follow the conventional pattern of inputting instance features and outputting corresponding classes, they often overlook the intrinsic relationships between pixels beyond their spatial features. As a result, the diversity in the ensemble classification results primarily relies on different DL models. However, training the DL models consumes a significant amount of time, and training multiple networks not only incurs additional time costs but also affects the overall efficiency. To address this, a new approach has been proposed in this paper, which takes advantage of the relationships between pixels and their combinations to generate diverse classification results. It's a novel ensemble classification framework, termed as the Doublet-Based Ensemble Classification Framework (DBECF), which eliminates the need for multiple classifiers. The DBECF starts by utilizing the training set to combine different samples to generate doublets. Then, features are assigned to these doublets through an exponentiation operation, resulting in a doublet training set. Using both the original training set and the derived doublet datasets, the DBECF is trained. For each input pixel, the DBECF produces multiple classification results, which are then integrated to obtain a more accurate output. To validate the proposed approach, experiments were conducted on three datasets, including multispectral images, hyperspectral images, and time series images. The maximum accuracies achieved by DBECF on the three datasets are 87.80 %, 97.71 %, and 83.51 %, respectively. In comparison to the contrastive methods, the incremental improvements in accuracy are 3.73 %, 7.66 %, and 9.16 %, respectively. The experimental results indicate that no matter using DL or non-deep learning for training, our proposed framework achieves progress on accuracy improvement outperforming classifications using comparative approach that based on single instance. This research provides a new perspective on the combination of DL and ensemble learning, highlighting its important implications and practical value in enhancing classification accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
凡凡fan发布了新的文献求助10
3秒前
传统的纸飞机完成签到 ,获得积分10
3秒前
CodeCraft应助调皮的奎采纳,获得10
4秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
GPTea应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
唐泽雪穗应助科研通管家采纳,获得10
6秒前
唐泽雪穗应助科研通管家采纳,获得10
6秒前
翼德救我i应助直率的一凤采纳,获得10
7秒前
cgliuhx完成签到,获得积分10
8秒前
12秒前
七七七呀发布了新的文献求助10
15秒前
18秒前
小谢完成签到,获得积分20
19秒前
小陈发布了新的文献求助10
20秒前
英俊的铭应助安静的采柳采纳,获得10
20秒前
cjh发布了新的文献求助10
22秒前
叶子宁完成签到,获得积分10
26秒前
CodeCraft应助小陈采纳,获得10
28秒前
Bowman完成签到,获得积分10
29秒前
夏珩完成签到,获得积分10
30秒前
搭碰完成签到,获得积分0
30秒前
39秒前
七七七呀完成签到,获得积分20
47秒前
KLED完成签到 ,获得积分10
49秒前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
52秒前
MchemG应助John采纳,获得30
53秒前
英俊的铭应助祝小鱼采纳,获得10
53秒前
54秒前
55秒前
李雷完成签到 ,获得积分10
55秒前
香蕉觅云应助lee采纳,获得10
58秒前
aym发布了新的文献求助10
59秒前
59秒前
yingL发布了新的文献求助10
59秒前
Rn完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925856
求助须知:如何正确求助?哪些是违规求助? 4196001
关于积分的说明 13031472
捐赠科研通 3967603
什么是DOI,文献DOI怎么找? 2174695
邀请新用户注册赠送积分活动 1191880
关于科研通互助平台的介绍 1101729